# Hydrogen

### 25.1 Elemental hydrogen

- Hydrogen does not occur native on Earth as H<sub>2</sub> gas. Hydrogen generally occurs bonded to oxygen in water, or bonded to carbon in organic compounds.
- The major industrial source of H<sub>2</sub> is from the reaction of hydrocarbons with steam (steam reforming), but in the future
  production from the electrolysis of water is likely to become more important.
- Hydrogen gas is used industrially to make ammonia and methanol, and in the reduction of unsaturated organic compounds and metal ions.
- Por practice questions on these topics, see questions 1 and 2 at the end of this chapter (p.1165)

## 25.2 Compounds of hydrogen

- Hydrogen forms binary hydrides with most of the elements.
- The electronegativity of hydrogen has an intermediate value (χ<sup>P</sup> = 2.20), so the nature of a binary hydride XH<sub>n</sub> depends on the electronegativity of the element X.
- Compounds with elements of lower electronegativity than hydrogen are hydridic and often ionic, whereas compounds with elements of higher electronegativity than hydrogen are protic and form covalently bonded compounds.
- Group 1 and 2 hydrides are mostly ionic, and react with water to give H<sub>2</sub>.
- Group 13 hydrides are electron deficient and contain bridging hydrogen atoms, for example diborane (B<sub>2</sub>H<sub>6</sub>). 3-centre
   2-electron bonding is required to explain their structures.
- Group 14–17 hydrides are covalent compounds containing 'normal' 2-centre 2-electron bonds. In addition to the simple hydrides XH<sub>n</sub>, there are compounds such as hydrazine (N<sub>2</sub>H<sub>4</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) which contain X–X bonds. These compounds are electron precise (Group 14) or electron rich (Groups 15–17).
- For Groups 13–17, the stability of the hydrides decreases going down a group. This is caused by weakening of the X-H
  bonds, which is due to reduced orbital overlap as X gets larger.
- For Groups 15–17, the hydrides become more acidic as each group is descended. This is due to the weakening of the X-H bonds and the increasing size of the resulting anions, which weakens the attraction between X<sup>-</sup> and H<sub>3</sub>O<sup>+</sup>.
- Por practice questions on these topics, see questions 3–9 at the end of this chapter (pp.1165–1166).



# 25.3 Hydrogen bonding

- Most hydrogen bonds are best described as electrostatic interactions between a hydrogen atom bound to an
  electronegative atom (D<sup>δ-</sup>–H<sup>δ+</sup>) and another atom that is also electronegative (A<sup>δ-</sup>) and has one or more lone pairs enabling
  it to act as a base.
- A typical hydrogen bond has a bond enthalpy of 20–30 kJ mol<sup>-1</sup>, which is approximately one-tenth the strength of a typical covalent bond.
- Strong hydrogen bonding leads to an increase in the melting point and boiling point. In the absence of hydrogen bonding, water would be a gas at room temperature.



For practice questions on these topics, see questions 10 and 11 at the end of this chapter (p.1166).

## 25.4 Isotope effects

- Bonds to deuterium are stronger than those to normal hydrogen because X–D bonds have lower zero point energies than X–H bonds.
- Deuterium labelling is useful in the assignment of infrared spectra. Large isotopic shifts are observed in infrared spectra due to the greater mass of <sup>2</sup>D over <sup>1</sup>H.



For practice questions on these topics, see questions 12 and 13 at the end of this chapter (p.1166).



## **Concept review**

By the end of this chapter you should be able to do the following.

- Describe the means of production and the main uses of hydrogen gas.
- Understand why binary hydrides can be protic or hydridic, and predict the character of a particular hydride.
- Predict whether the bonding in a binary hydride is covalent or ionic, and whether a covalent hydride is likely to contain bridging hydrogen atoms.
- Describe how the stability and reactivity of hydride compounds changes across the Periodic Table and down each group.
- Explain why the hydrogen halides increase in acidity from HF to HI.
- Explain how hydrogen bonds are formed and why very strong hydrogen bonds can be described as covalent interactions.
- Predict the effect of hydrogen bonding on melting points and boiling points.
- Calculate the effects of replacing hydrogen by deuterium on infrared stretching frequencies.



## **Key equations**

The effect of deuteration on IR spectra

$$\frac{v_{\rm D}}{v_{\rm H}} \approx \left(\frac{1}{2}\right)^{\frac{1}{2}} = 0.707$$

(25.2)

