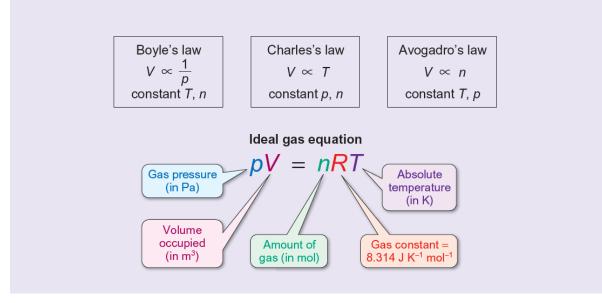
Gases

8.1 The gas laws: an empirical approach

• The three experimentally observed laws of gas behaviour can be combined to give the ideal gas equation



8.2 Using the ideal gas equation

- If any three of n, p, V, and T are known, the fourth can be calculated using the ideal gas equation pV = nRT.
- For a fixed amount of gas, the effect of changing the conditions can be calculated using $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$.
- Standard conditions for a gas at SATP (standard ambient temperature and pressure) are defined as 298.15 K (25 °C) and 1 bar.
- The molar volume, $V_{\rm m}$, of an ideal gas at SATP is 0.0248 m³ mol⁻¹ (24.8 dm³ mol⁻¹), although the molecules take up only a small fraction (<0.1%) of this volume.
- Por practice questions on these topics, see questions 1, 4–9, 11 and 14 at the end of this chapter (p.378).

8.3 Mixtures of gases

 Dalton's law states that the total pressure exerted by a mixture of gases is the sum of the partial pressures of each individual gas

$$p_{\text{total}} = p_{\text{A}} + p_{\text{B}} + p_{\text{C}} + \dots = \sum_{i} p_{i}$$

- Mole fraction of gas A in a mixture = $\frac{\text{number of moles of A}}{\text{total number of moles present}} = \frac{n_{\text{A}}}{n_{\text{total}}}$
- Partial pressure of gas $A = p_A = x_A p_{total}$

For practice questions on these topics, see questions 6, 7, 10 and 22 at the end of this chapter (p.378).

8.4 Kinetic molecular theory and the gas laws

- The ideal gas equation can be derived using the kinetic theory of gases, making the assumptions that:
 - the gas molecules have negligible size;
 - · collisions are elastic so there is no energy loss;
 - · the molecules do not interact with each other.
- Using the kinetic theory of gases and these assumptions, the pressure of a gas, p, can be calculated by finding the rate of
 change of momentum of molecules colliding with the walls of the container.

$$p = \frac{1}{3} \left(\frac{nN_A}{V} \right) mc^2$$

where m is the mass of a molecule and c is the root mean square (rms) speed. V is the volume of gas, n is the amount in moles, and N_A is Avogadro's constant.

For practice questions on these topics, see questions 25 and 26 at the end of this chapter (p.380).

8.5 The speeds of molecules in a gas

- Gas molecules move at high speeds that depend on the temperature and their molar mass. For example, N₂ molecules at 298 K have an average speed of about 500 m s⁻¹.
- The distribution of molecular speeds is described by the Maxwell–Boltzmann distribution. The maximum value in the curve represents the most probable value of the speed.
- The rate of effusion of a gas is proportional to $1/M^{1/2}$ (Graham's law).
- Characteristic properties of molecules in a gas include:
 - the collision cross-section, σ, the target area presented for another molecule to collide with;
 - the collision frequency, Z, the mean number of collisions per second;
 - the mean free path, λ , the mean distance travelled between collisions.
- Gas molecules at atmospheric pressure undergo collisions at a rate of about 1 × 10¹⁰ s⁻¹ and have mean free paths many times larger than the size of the molecules.

- **-**
- There are two different ways of representing the average speed of a molecule. (The numerical values are quite similar.)
 - Root mean square (rms) speed, c. The expressions for the mean kinetic energy $(\overline{E}_{KE} = \frac{1}{2}mc^2)$ and for $EV(pV = \frac{1}{3}nMc^2)$ depend on the mean square of the molecular speeds

$$c = \left(\frac{s_1^2 + s_2^2 + \dots + s_N^2}{N}\right)^{1/2} = \text{root mean square speed}$$

• Mean speed, \overline{c} . Effusion, collision frequency, and mean free path depend on the mean speed.

$$\overline{c} = \frac{s_1 + s_2 + \dots + s_N}{N}$$

For practice questions on these topics, see questions 11, 12, 15–19, 24, 25, 28–30 at the end of this chapter (p.378).

8.6 Real gases

- For many gases, the ideal gas equation describes experimental behaviour well at low pressures and high temperatures but deviations occur at high pressures and low temperatures.
- A more realistic description of gas behaviour is given by the van der Waals equation.
- The van der Waals equation is derived by introducing into the ideal gas equation terms to account for the intermolecular attractions, $a(n/V)^2$, and the finite molecular size, nb

$$\left(p + a\left(\frac{n}{V}\right)^2\right)(V - nb) = nRT$$

For practice questions on this topic, see questions 21, 23, 27, 31–33 at the end of this chapter (p.378).

Concept review

By the end of this chapter, you should be able to do the following.

- Describe the experimental evidence for the relation between n, p, V, and T, in the ideal gas equation.
- Use the ideal gas equation to solve problems relating to changing the conditions of gases.
- Apply Dalton's law of partial pressures to mixtures of gases.
- Describe the assumptions underlying the kinetic theory of gases.
- Calculate the average (root mean square) speed of molecules in a gas and account for its dependence on the temperature and the molar mass of the gas.
- Explain the difference between the root mean square speed, c, and the mean speed, c

 .

- Describe the Maxwell-Boltzmann distribution of molecular speeds and its dependence on the temperature and the molar mass of the gas.
- Explain what is meant by effusion and apply Graham's law.
- Calculate the frequency of collisions and mean free path between molecules in a gas.
- Account for deviations of real gases from ideal behaviour.
- Use the van der Waals equation to describe the behaviour of real gases.
- Understand the role of models in explaining the behaviour of chemical systems and the difference between an empirical approach and a theoretical approach.

Burrows et al: Chemistry³ Third Edition

E Key equations		
The ideal gas law	pV = nRT	(8.5)
Partial pressures and Dalton's law	$p_{\text{total}} = p_{\text{A}} + p_{\text{B}} + p_{\text{C}} +$ $p_{\text{A}} = x_{\text{A}} p_{\text{total}}$ $x_{\text{A}} = \frac{n_{\text{A}}}{n_{\text{total}}}$	(8.8) (8.10) (8.9)
p–V relationship derived from the kinetic theory	$pV = \frac{1}{3}nN_{\rm A}mc^2$	(8.13b)
Root mean square speed of gas molecules	$c = \left(\frac{3RT}{M}\right)^{1/2}$	(8.19)
Graham's law of effusion	Rate of effusion $\propto \frac{1}{M^{1/2}}$	(8.20)
Mean free path	$\lambda = \frac{RT}{\sqrt{2} N_{\rm A} \sigma p}$	(8.23)
van der Waals equation	$\left(p + a\left(\frac{n}{2}\right)^2\right)(V - nb) = nRT$	(8.25)