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8 
Gases 

Answers to worked examples 

W.E. 8.1 Using Boyle’s law (on p. 348 in Chemistry3) 

An inflated balloon has a volume of 1 dm3 at 1 atm pressure.  At what 

pressure will it occupy a volume of 1.5 dm3? 

 Strategy 

Use Boyle’s law (Equation 8.1), which tells us that the pressure of a gas is 

inversely proportional to its volume 

𝑝 ∝ 1/𝑉 

 Solution 

The volume of the balloon increases from V1 = 1 dm3 to V2 = 1.5 dm3, which is 

a factor of 1.5.  The pressure of gas within the balloon therefore decreases by 

a factor of 1.5.  The initial pressure is 1 atm, so that, according to Boyle’s law, 

the final pressure is 

1 atm ×
𝑉1

𝑉2
= 1 atm ×

1 dm3

1.5 dm3
= 0.67 atm 

 

W.E. 8.2 Using columns of liquid to measure pressures (on p. 351 in Chemistry3) 

The pressure at the top of a high mountain is  0.4 atm.  Calculate the height of 

the mercury column in a barometer at the top of the mountain. 



Solutions manual for Burrows et.al. Chemistry
3
 Third edition 

 H i g h e r   E d u c a t i o n
© Oxford University Press, 2017. All rights reserved. 
 

 Strategy 

Rearrange Equation 8.6 and use it to calculate the height of the column of 

mercury, remembering to use SI units throughout.  

 Solution 

From Table 8.1 we know that 

1 atm = 101325 Pa 

and therefore that a pressure of 0.4 atm corresponds to 

𝑝 = 0.4 atm × 101325 Pa atm−1 = 40530 Pa 

Since 1 g = 1 × 10–3 kg, to convert from units of g to kg, we must multiply by a 

conversion factor of  

1 × 10−3kg

1 g
 

and because 1 cm3 = 1 × 10–6 m3, then to convert from cm3 to m3 we must 

multiply by 

1 × 10−6m3

1 cm3
 

The density of mercury is thus 

𝜌 = 13.6 g cm−3 ×
1 × 10−3kg

1 g
×

1 × 10−6m3

1 cm3
= 13600 kg m−3 

Rearranging Equation 8.6 and substituting the appropriate values for the 

density, pressure and acceleration due to gravity 

ℎ =
𝑝

𝜌𝑔
=

40530 Pa

13600 kg m−3 × 9.81 m s−2
=

40530 kg m−1 s−2

13600 kg m−3 × 9.81 m s−2
0.30 m 
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W.E. 8.3 Using the ideal gas equation to calculate the amount of gas (on p. 352 in 

Chemistry3) 

A gas cylinder contains 10 kg of oxygen at a pressure of 20 bar at 25°C.  

Calculate the volume of the cylinder, in m3. 

 Strategy 

Use the molar mass of oxygen to find the amount of substance, i.e. the 

number of moles, of gas present.  Rearrange the ideal gas equation to give an 

expression for the volume and substitute the values, once converted to SI 

units, for the pressure, temperature and amount of substance. 

 Solution 

The molar mass of oxygen, O2, is 

𝑀 = (16.02 × 2)g mol−1 = 32.04 × 10−3kg 

Thus, 10 kg of oxygen must correspond to an amount 

𝑛 = 𝑚/𝑀 = 10 kg/32.04 kg mol−1 = 312 mol 

 The temperature should be expressed in units of kelvin, where 

𝑇/K = 𝜃/℃ + 273.15 = 25 + 273.15 = 298 

 if the temperature on the Celsius scale is θ.  The equation has been written in 

this way to ensure that the units are consistent.  Table 8.1 gives the 

conversion factors for the various units of pressure, so that, because 

1 bar ≡ 105 Pa,  

𝑝 = 20 bar × (105Pa bar−1) = 20 × 105 Pa = 20 × 105J m−3

The ideal gas equation, Equation 8.5, may be rearranged to give an 

expression for the volume of the cylinder, and the appropriate values, 

expressed in SI units, substituted 

𝑉 = 𝑛𝑅𝑇/𝑝 

= 312 mol × 8.3145 J K−1mol−1 × 298 K/20 × 105J m−3 
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= 0.387 m3 

It is helpful to express the units of pressure as J m–3 rather than Pa, in order 

to help us to confirm that the units of the result are indeed the SI units of 

volume, m3.  

 

W.E. 8.4 The effect of changing conditions (on p. 352 in Chemistry3) 

A container fitted with a piston contains gas at 1 atm and 25°C.  Calculate the 

pressure if the piston is moved so as to halve the pressure.  (Assume the 

temperature is constant.) 

 Strategy 

Use the ideal gas equation, written in the form of Equation 8.7, remembering 

to express the pressure in SI units. 

Solution 

We may simplify Equation 8.7 because we can assume that the temperature 

remains constant 

𝑝1𝑉1

𝑇1
=

𝑝2𝑉2

𝑇2
 

𝑝1𝑉1 = 𝑝2𝑉2 

and rearrange it to give an expression for the final pressure 

𝑝2 = 𝑝1𝑉1/𝑉2 

Because the volume halves,  

𝑉1/𝑉2 = 2 

 so that  

𝑝2 = 2𝑝1 = 2 × 1 atm = 2 atm 

Thus, halving the volume results in a doubling of the pressure, providing the 

amount of substance and temperature remain constant. 
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We may use the conversion factor in Table 8.1 to express this pressure in SI 

units 

𝑝2 = 2 atm × 101325 Pa atm−1 = 202650 Pa 

although because the initial pressure was quoted to only one significant 

figure, it is probably inappropriate to quote the pressure in pascals to this 

level of precision. 

 

W.E. 8.5 The molar volume of an ideal gas (on p. 354 in Chemistry3) 

 

Calculate the molar volume (in m3) of an ideal gas at 1.00 atm and exactly 

0°C. 

 Strategy 

Use the ideal gas equation, Equation 8.5, remembering to express all values 

in SI units. 

 Solution 

Use of the conversion factors in Table 8.1 shows that a pressure of 1.00 atm 

corresponds to 

𝑝 = 1.00 atm × 101325 Pa atm−1 = 101325 Pa = 101325 J m−3 

A temperature of exactly 0°C corresponds to 273.15 K.  Rearranging 

Equation 8.5, gives 

𝑉 = 𝑛𝑅𝑇/𝑝 

which, if n = 1 mol, becomes 

𝑉m = 𝑅𝑇/𝑝 

= 8.3145 J K−1mol−1 × 273.15 K / 101325 J m−3 

= 22.4 × 10−3m3 

Because 1 dm3 ≡ 10–3 m3, this is equivalent to 22.4 dm3. 
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W.E. 8.6 Partial pressures of gases (on p. 357 in Chemistry3) 

 

Calculate the partial pressure of ethane in the gas at the same total pressure.  

Give your answer in atm. 

 Strategy 

Use Dalton’s law, Equation 8.10, to calculate the partial pressure of ethane 

from its mole fraction and the total pressure. 

Solution 

If the mole fraction of ethane is 6%, then 6 out of every 100 molecules in the 

gas are ethane.  This is equivalent to a mole fraction of ethane of 0.06.  We 

may use Dalton’s law in the form of Equation 8.10 directly 

𝑝C2H6
= 𝑥C2H6

𝑝total = 0.06 × 5 atm = 0.3 atm 

 

W.E. 8.7 How fast do molecules move? (on p. 362 in Chemistry3) 

 

Calculate the root mean square speeds of helium molecules and carbon 

dioxide molecules at 15°C. 

 Strategy 

Use Equation 8.19, remembering to express the molar mass of the molecules 

in units of kilogramme and the temperature in units of kelvin. 

Solution 

The molar mass of helium is 

𝑀He = 4.00 g mol−1 = 4.00 × 10−3 kg mol−1 

and of carbon dioxide is 

𝑀CO2
= [12.01 + (2 × 16.00)] g mol−1 = 44.01 × 10−3 kg mol−1 

A temperature of 15°C is equivalent to 
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𝑇/K = 𝜃/℃ + 273.15 = 25 + 273.15 = 298 

Applying Equation 8.19 then gives the speeds of helium atoms and carbon 

dioxide molecules as 

𝑐He = (
3𝑅𝑇

𝑀He
)

1/2

= (
3 × 8.3145 J K−1mol−1 × 298 K

4.00 × 10−3 kg mol−1
)

1/2

= 1363 m s−1 

and  

𝑐CO2
= (

3𝑅𝑇

𝑀CO2

)

1/2

= (
3 × 8.3145 J K−1mol−1 × 298 K

44.01 × 10−3 kg mol−1
)

1/2

= 411 m s−1 

 

W.E. 8.8 Relative rates of effusion (on p. 366 in Chemistry3) 

 

Calculate the relative rates of effusion of oxygen, carbon dioxide, and 

nitrogen through a porous film at a fixed temperature. 

 Strategy 

Use Equation 8.21, which shows how the relative rates of effusion depend 

upon the molar mass of the molecules. 

Solution 

We may apply Equation 8.21 directly, to express the rate of effusion of 

oxygen  and carbon dioxide relative to that of nitrogen.  The molar masses of 

the species are 

𝑀O2
= (2 × 16.00) g mol−1 = 32.00 g mol−1 

𝑀CO2
= [12.01 + (2 × 16.00)] g mol−1 = 44.01 g mol−1 

𝑀N2
= (2 × 14.00) g mol−1 = 28.00 g mol−1 

so that the relative rates of effusion are 

Rate of effusion of O2

Rate of effusion of N2
= (

𝑀N2

𝑀O2

)

1/2

= (
28.00 g mol−1

32.00 g mol−1
)

1/2

= 0.935  
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and 

Rate of effusion of CO2

Rate of effusion of N2
= (

𝑀N2

𝑀CO2

)

1/2

= (
28.00 g mol−1

44.01 g mol−1
)

1/2

= 0.798  

 

W.E. 8.9 How often do molecules collide? (on p. 370 in Chemistry3) 

 

Calculate the collisional frequency in hydrogen gas at SATP and account for 

the difference from that for nitrogen.  (For H2,  = 0.27 nm2 and the mean 

speed, 𝑐̅ = 1780 m s−1 at 298 K.) 

 Strategy 

Use Equation 8.22 directly. 

 Solution 

If we note that  

σH2
= 0.27 nm2 = 0.27 × 10−18m2 

 because 1 nm2 = 10–18 m2, and that standard ambient temperature and 

pressure correspond to  

𝑝 = 1 bar = 105Pa = 105J m−3 

and 

𝑇 = 298 K 

then we may use Equation 8.22 directly, 

𝑍 = √2𝑁𝐴𝑐̅𝜎 ×
𝑝

𝑅𝑇
 

= √2 × 6.022 × 1023mol−1 × 1780 ms−1 × 0.27 × 10−18m2

×
105 J m−3

8.3145 J K−1mol−1 × 298 K
 

= 1.65 × 1010s−1 
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The collisional frequency is 2.4× greater than that for nitrogen under the 

same conditions because, even though the collision cross section of a 

hydrogen molecule is smaller, the hydrogen molecules are moving much 

faster because their mass is so small. 

 

W.E.8.10 Molecular collisions at low pressures (on p. 371 in Chemistry3) 

Calculate the pressure at which the mean free path of N2 is 10 cm at 298 K. 

 Strategy 

Rearrange Equation 8.23 to obtain an expression for the pressure of a gas in 

terms of the mean free path, collision cross section and temperature.   

 Solution 

Rearranging Equation 8.23 gives 

𝑝 =
𝑅𝑇

√2𝑁A𝜎𝜆
 

 The collision cross section of N2 is given in Table 8.3 as  = 0.43 nm2, which 

is equivalent to 0.43 × 10–18 m2.  The mean free path is  = 10 cm, which is 

equivalent to 0.1 m.  Thus, substituting gives 

𝑝 =
8.3145 J K−1mol−1 × 298 K

√2 × 6.022 × 1023mol−1 × 0.43 × 10−18m2 × 0.1 m
 

= 0.0677 J m−3 

= 0.0677 Pa 

 

W.E. 8.11 Using the van der Waals equation (on p. 376 in Chemistry3) 

Work out the percentage reduction in V due to the term nb and compare it to 

the percentage reduction in p due to the term a(n/V)2. Which correction 

factor makes the larger change? 
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 Strategy 

Work out the percentage reduction in V due to the term nb and compare it to 

the percentage reduction in p due to the a(n/V)2 term. 

 Solution 

The term in b increases the volume by a factor of  

𝑉/(𝑉 − 𝑛𝑏) = 0.150 m3/(0.150 m3 − 1250 mol × 3.9 × 10−5m3mol−1) 

= 1.48 

which is equivalent to a change of +48%.  The term in a, however, reduces 

the pressure predicted from the ideal gas equation of 203 bar = 203 × 105 Pa 

by a factor of 

𝑎(𝑛\𝑉)2

𝑝
=

0.137 Pa m6mol−2 × (1250 mol/0.150 m3)2

203 × 105 Pa
= 0.469 

which is equivalent to a change of –53%.  The term in a, which attempts to 

accommodate the attractive interactions therefore has a larger effect than 

the term in b, which models the repulsive interactions.  However, the 

magnitudes of the two effects are similar but act in opposing ways.   

 


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Answers to boxes 

Box 8.1 Car air bags (on p. 353 in Chemistry3) 

An air bag needs 60 dm3 of gas to inflate it at 298 K.  Calculate: 

(a)  the number of moles of N2 gas at 298 K required to inflate the air bag to a 

pressure of 1 atm; 

(b)  the number of moles of NaN3 required to produce this amount of gas; 

(c)  the mass of NaN3 required. 

 Strategy 

Apply the ideal gas equation, Equation 8.5, to calculate the amount of gas 

required.  Use the stoichiometry of the reaction that produces the N2 gas that 

expands the air bag to calculate the amount of NaN3 required.  Then use the 

molar mass of NaN3 to determine the mass of solid required. 

 Solution 

(a)  In order to apply the ideal gas equation, we must first convert the value 

given for the pressure to SI units of pascals using the conversion factor listed 

in Table 8.1 

𝑝 = 1.00 atm × 101325 Pa atm−1 = 101325 Pa = 101325 J m−3 

We must also remember to convert the volume from units of dm3 to m3, 

where 1 dm3 ≡ 10–3 m3, so that 60 dm3 ≡ 60 × 10–3 m3.  Rearranging 

Equation 8.5, and substituting then gives 

𝑛N2
=

𝑝𝑉

𝑅𝑇
=

101325 J m−3 × 60 × 10−3m3

8.3145 J K−1mol−1 × 298 K 
= 2.454 mol 

(b)  The stoichiometry of the chemical equation for the production of N2 gas 

from solid NaN3 

2 NaN3(s) → 2 Na(s) + 3 N2(g) 

shows that every 1 mol of N2 that is produced requires 1.5 mol of solid NaN3.  

The amount of NaN3 required is therefore 
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𝑛NaN3
= 1.5 × 2.454 mol = 9.815 mol 

(c)  The molar mass of NaN3 is  

𝑀 = [22.99 + (3 × 14.00)] g mol−1 

= 64.99 g mol−1 = 64.99 × 10−3 kg mol−1 

The mass of NaN3 required is thus 

𝑚 = 𝑛 × 𝑀 = 9.815 mol × 65.00 × 10−3kg mol−1 = 0.637 kg 

 

Box 8.3 Measuring the distribution of speeds in a gas (on p. 364 in Chemistry3) 

Why must the apparatus be contained in a sealed vessel at low pressure? 

Solution 

A sealed vessel ensures that it is only molecules from the sample gas that are 

reaching the detector, and a low pressure reduces the number of 

intermolecular collisions between gas molecules, which would otherwise 

affect their speed. 

 

Box 8.4 Enriching uranium: a practical application of effusion (on p. 367 in 

Chemistry3) 

Use Graham’s law to calculate the relative rates of effusion of 239UF6 and 

235UF6.  (There is only one common isotope of fluorine, 19F.) 

Strategy 

Use Equation 8.21, which is a statement of Graham’s law that shows how the 

relative rate of effusion depends upon the molar mass. 

Solution 

The molar masses of the two different isotopomers of UF6 are 

𝑀 U235 F6
= [235.00 + (6 × 19.00)] g mol−1 = 349.00 g mol−1 
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𝑀 U239 F6
= [239.00 + (6 × 19.00)] g mol−1 = 353.00 g mol−1. 

Applying Equation 8.21, the relative rates of effusion are then 

Rate of effusion of UF6
239

Rate of effusion of UF6
235 = (

𝑀 UF6
235

𝑀 UF6
239

)

1/2

= (
349.00 g mol−1

353.00 g mol−1
)

1/2

= 0.994  
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Answers to end-of-chapter questions  

1. 3.036 g of a gas occupy a volume of 426 cm3 at 273 K and 1.00 atm pressure.  

Calculate the molar mass of the gas. 

Strategy 

Use the ideal gas equation to determine the amount of gas present.  Calculate 

the molar mass from the amount and mass of gas. 

Solution 

In order to apply the ideal gas equation, all values should be expressed in SI 

units without prefixes.  A volume of 426 cm3 is equivalent to 426 × 10–6 m3, 

whilst a pressure of 1.00 atm corresponds to a 101325 Pa ≡ 101325 J m–3.  

Using Equation 8.5, 

𝑛 =
𝑝𝑉

𝑅𝑇
=

101325 J m–3 × 426 × 10−6m3

8.3145 J K−1mol−1 × 273 K
= 0.0190 mol 

The molar mass is then given by 

𝑀 = 𝑚/𝑛 = 3.036 g/0.0190 mol = 160 g mol−1  

 

2. At 27°C and 1.0 atm pressure, the density of a gaseous hydrocarbon is 

1.22 g dm–3.  What is the hydrocarbon? 

Strategy 

Combine the definition of density with the ideal gas equation to give an 

expression for the molar mass of the gas for a given temperature, pressure 

and density.  Substitute the values using appropriate SI units. 

Solution 

Density is the ratio of mass to volume.   

𝜌 = 𝑚/𝑉 
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Since mass may be expressed in terms of the amount of substance present 

and the molar mass as 

𝑚 = 𝑛 × 𝑀 

then 

𝜌 = 𝑛 × 𝑀/𝑉 

and so 

𝑀 = 𝜌𝑉/𝑛 

But we know from the ideal gas equation, Equation 8.5, that 

𝑉/𝑛 = 𝑅𝑇/𝑝 

so we can eliminate the amount and volume of gas from our expression 

𝑀 = 𝜌 × 𝑅𝑇/𝑝 

Before we can use the expression, we must convert the values quoted to 

appropriate SI units without prefixes.  A density of 1.22 g dm–3 corresponds 

to 

𝜌 = 1.22 g dm–3 × 10−3kg g−1 × 103dm3m−3 = 1.22 kg m−3 

whilst a pressure of 1.0 atm is equivalent to 101325 Pa ≡ 101325 J m–3.  A 

temperature of 27°C corresponds to  

𝑇/𝐾 = 𝜃/℃ + 273.15 = 27 + 273.15 = 300  

Substituting gives 

𝑀 = 1.22 kg m−3 × 8.3145 J K−1mol−1 × 300 K/101325 J m−3 

= 0.030 kg mol−1 = 30.0 g mol−1 

This suggests that the gas is ethane, which has a molar mass of 

𝑀 = [(2 × 12.01) + (6 × 1.01)] g mol−1 = 30.08 g mol−1 
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3. A sample of gas has a volume of 346 cm3 at 25°C when the pressure is 

1.00 atm.  What volume will it occupy if the conditions are changed to 35°C 

and 1.25 atm? 

Strategy 

Rearrange Equation 8.7, which shows how pressure, volume and 

temperature are related when the conditions change for a fixed amount of 

gas. 

Solution 

If, from Equation 8.7, 

𝑝1𝑉1

𝑇1
=

𝑝2𝑉2

𝑇2
 

then 

𝑉2 = 𝑉1 ×
𝑝1

𝑝2
×

𝑇2

𝑇1
 

Whilst it is often safest to convert all values to SI units, there is no need to 

change the pressures given from units of atmospheres to pascals, because 

the units will cancel anyway.  It is, however, necessary to convert the 

temperatures to kelvins, so that 

𝑇1/𝐾 = 𝜃/℃ + 273.15 = 25 + 273.15 = 298  

𝑇2/𝐾 = 𝜃/℃ + 273.15 = 35 + 273.15 = 308  

Thus, 

𝑉2 = 346 cm3 ×
1.00 atm

1.25 atm
×

308 K

298 K
= 286 cm3 
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4. The air that we breathe is about 21% oxygen, by volume.  Exhaled air 

contains about 14% oxygen.  The absorption of oxygen within the lungs 

takes place in tiny spherical compartments called alveoli, which have a 

diameter of the order of 0.1 mm.  Estimate the number of oxygen molecules 

absorbed in one breath in each of the alveoli.  (Assume the body temperature 

is 37°C.) 

Strategy 

Use the ideal gas equation to determine the amount of air contained in each 

of the alveoli.  Then calculate the amount of oxygen that is absorbed in each 

breath knowing the proportion of air that is oxygen. 

Solution 

The volume of each of the spherical alveoli is 

𝑉 =
4

3
π𝑟3 =

4

3
π × (0.1 × 10−3m)3 = 4.2 × 10−12m3 

The amount of gas contained in this volume at atmospheric pressure of 

101325 Pa and a physiological temperature of 37°C ≡ 308 K may then be 

calculated from the ideal gas equation, Equation 8.5, 

𝑛 =
𝑝𝑉

𝑅𝑇
=

101325 Pa × 4.2 × 10−12m3

8.3145 J K−1mol−1 × 308 K
= 1.57 × 10−5 mol 

We know that the proportion of this gas that is absorbed is 21% – 14% = 7% 

and that every mole of gas contains Avogadro’s number of molecules.  The 

number of oxygen molecules absorbed in each breath must therefore be 

𝑁 = 7% × 𝑁A × 𝑛 

= 0.07 × 6.022 × 1023mol−1 × 1.57 × 10−5mol 

= 6.6 × 1017 

 

 

 



Solutions manual for Burrows et.al. Chemistry
3
 Third edition 

 H i g h e r   E d u c a t i o n
© Oxford University Press, 2017. All rights reserved. 
 

 

5. Incandescent light bulbs, which have only recently gone out of use, were 

filled with an inert gas to prevent the filament from burning. Find the mass 

of argon needed to fill a 75 cm3 light bulb to a pressure of 1.05 atm at 25 °C. 

Strategy 

You can use the ideal gas equation to determine the amount of gas present in 

the light bulb and then use the atomic mass to find mass of Argon gas. 

Solution 

Using the ideal gas equation to find the number of moles needed, 

1

3

3

1 1

5 6-(1.05  1.013 10 ) (75 1atm Pa atm m

JK

0 )

8.314 (25 273.15)

3.22 1

mol K

mol0

pV nRT

pV
n

RT  







   
 

 

 

 

Remember that 1 cm3 = 1  10-6  m-3 and 1 atm = 101325 Pa 

AR for argon is 39.95 g mol-1 so  

mass = 3.2  10-3 mol  39.95 g mol-1 = 0.128 g 

 
 

6. A vessel of volume 50.0 dm3 contains 2.50 moles of argon and 1.20 moles of 

nitrogen at 273.15 K.  

(i)   Calculate the partial pressure (in bar) of each gas.  

(ii)  Calculate the total pressure in bar.  

(iii)  How many additional moles of nitrogen must be pumped into the 

vessel in order to raise the pressure to 5 bar? 

Strategy 

The partial pressure is the pressure that the gas would exert is alone in the 

container. You can find these using the ideal gas equation. The total 

pressure will be the sum of the partial pressures. One you know the 
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pressure of hydrogen that is needed then you can use the ideal gas equation 

to find how many moles are needed. 

Solution 
 

For an ideal gas, the two gases act independently. Using the ideal gas 

equation,  

(i) For argon 

 

For nitrogen 

 

(ii)        Total pressure = p(argon) + p(nitrogen) = 1.14 bar + 0.55 bar = 

1.69 bar 

(iii) From the ideal gas equation, we can find out how many moles are 

needed to generate a pressure of 5 bar and subtract the 3.70 mol of gas that 

we already have 

 

 Hence we need (11.0 – 3.70) = 7.3 mol of nitrogen  

 

7. A mixture of methane and ethane is contained in a 500 cm3 container at 

298.15 K. The pressure is 1.25 bar and the mass of gas is 0.530 g. Find the 

mass of methane in the mixture. 

 

Strategy 
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You can use the ideal gas equation to determine the amount of gas present 

in the container. Knowing the molar masses of the two gases, the mass of 

each can be found by proportion. 

Solution 

Using the ideal gas equation can be used to find the number of moles in the 

container 

-5 3

1

61

1

(1.25  1 10 ) (500 10 )

8.314

bar

(25 273.15)

0.02

Pa bar m

JK mol

2

K

5 mol

pV nRT

pV
n

RT  





   
 

 



 

Hence,  
4CHn +

2 6C Hn = 0.0252 mol 

MR for methane is methane is 16.04 g mol-1 and for ethane is 30.07 g mol-1 

so  

(16.04 g mol-1  
4CHn mol) + (30.07 g mol-1  (0.0252 - 

4CHn ) mol) = 0.530 g 

From which 
4CHn = 0.016 mol  0.016  16.04 g mol-1 = 0.260 g 

 

 

8. Two bulbs A and B, with volumes VA = 1 dm3 and VB = 5 dm3, are connected 

via a tap. The volume of the connecting tubing is negligible. 

 

Bulb A contains gas at a pressure of 6 bar while bulb B contains a vacuum.  
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(i) The temperature of the whole apparatus is maintained at 298 K. If the 

tap is opened, calculate the pressure of gas in the system after opening the 

tap. 

(ii) The tap is closed and bulb B is then immersed in an oil bath at a 

temperature of 423 K while the temperature of bulb A is maintained at 298 

K. Calculate the resulting pressures in each bulb. 

(iii) The tap is opened again. What is the final pressure and the number 

of moles of gas in each bulb? 

 

Strategy 

(i)     You can use Boyle’s law since the temperature and number of moles 

are constant. (ii) Now we have constant volume but changing temperature 

so can use Charles’ Law for the hot bulb.  (iii) The ideal gas equation can be 

used to find the total amount of gas present. Knowing the molar masses of 

the two gases, the mass of each can be found by proportion. 

Solution 

(i) Applying Boyle’s law since the temperature and number of moles are 

constant 

 

(ii) Since bulb A remains sealed (constant volume) at the same 

temperature the pressure is unchanged. 

For bulb B, the pressure increases due to the higher temperature 

       
1 1 2 2

3 3

2

2

                    

6 bar 1 dm  / bar (1 5) dm

                       1 bar

p V p V

p

p
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(iii) Now, when the tap is opened, the pressure will equalise through 

the system. Say the number of moles in each bulb are nA and nB  in bulbs A 

and B respectively. We can work out the number of moles of gas in the 

system from the data in (i). 

  

 So nA + nB = 0.24 mol    or     nB = (0.24 - nA) mol 

If the tap is opened, the pressure in both bulbs must be equal so pA = pB. 

From the ideal gas equation,  

 

We can find the pressure from the values in either bulb (since the pressures 

must be the same)  
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9. Divers "bends" are caused by the formation of bubbles of nitrogen in blood 

as the solubility reduces when the diver returns to the surface. The 

solubility of nitrogen in water at 1 atm pressure is approximately 13.0 mg 

kg-1 at body temperature of 37 °C and increases linearly with pressure. In 

water, the pressure increases at the rate of 1 atmosphere per 10 m depth.  

Estimate the volume of gas that comes out of solution when a diver who 

has 4.5 kg of blood rapidly ascends from a depth of 50 m of water to the 

surface. Assume the solubility of nitrogen in blood is the same as in water. 

 

Strategy 

From the data, you can calculate the total amount of nitrogen dissolved in 

the diver’s blood at 50 m depth. Comparing this with the amount that 

dissolves at the surface gives the amount that comes out of the blood which 

can be converted to a volume using the ideal gas equation. 

Solution 

50 m depth would correspond to a pressure of 5 atm = 5  101325 Pa  

= 5.066 105 Pa. 

For 4.5 kg of blood, the total amount dissolved at 1 atm pressure  

= 4.5 kg  13.0 mg kg-1 = 58.5 mg  
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The solubility at 50 m depth or 5 atm pressure would be approx. five times 

greater than at 1 atm so amount of N2 dissolved = 5  58.5 mg = 292.5 mg 

kg-1. 

When the diver ascends, the amount of N2 coming out of solution is 292.5 

mg – 58.5 mg = 234.0 mg. 

To find the number of moles, divide by the relative molar mass 

234.0 mg = (234.0  10-3 g)  32 g mol-1 = 7.31  10-3 mol 

This can be converted to a gas volume using the ideal gas equation 

1 1

3

3

3
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

 

 

 

 

10. A mixture of nitrogen and carbon dioxide contains 38.4% N2 by mass.  What 

is the mole fraction of nitrogen in the mixture?  If the total pressure is 

1.2 atm, what is the partial pressure of each gas in Pa? 

 Strategy 

Calculate the molar masses of nitrogen and carbon dioxide and hence 

determine the mole fraction of each in the gas.  Use Dalton’s law to deduce 

the partial pressures. 

Solution 

The proportion of N2 by mass is 
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𝑚N2

𝑚total
=

𝑚N2

𝑚N2
+ 𝑚CO2

 

=
𝑛N2

𝑀N2

𝑛N2
𝑀N2

+ 𝑛CO2
𝑀CO2

 

=
1

1 + (𝑛CO2
/𝑛N2

)(𝑀CO2
/𝑀N2

)
= 0.384 

Rearranging, 

1 + (𝑛CO2
/𝑛N2

)(𝑀CO2
/𝑀N2

) = 1/0.384 = 2.60 

Hence, 

(𝑛CO2
/𝑛N2

)(𝑀CO2
/𝑀N2

) = 2.60 − 1 = 1.60 

and 

(𝑛CO2
/𝑛N2

) = 1.60/(𝑀CO2
/𝑀N2

) 

But 

𝑀CO2
= [12.01 + (2 × 16.00)]g mol−1 = 44.01 g mol−1 

𝑀N2
= (2 × 14.00)g mol−1 = 28.00 g mol−1 

so that 

(𝑛CO2
/𝑛N2

) = 1.60/(44.01 g mol−1/28.00 g mol−1) = 1.02 

The mole fraction of nitrogen is 

𝑥N2
=

𝑛N2

𝑛N2
+ 𝑛CO2

=
1

1 + (𝑛CO2
/𝑛𝑁2

)
 

so that substituting for the ration of the amounts of the two species gives 

𝑥N2
=

𝑛N2

𝑛N2
+ 𝑛CO2

=
1

1 + (𝑛CO2
/𝑛𝑁2

)
=

1

1 + 1.02
= 0.495 

The mole fraction of carbon dioxide is 



Solutions manual for Burrows et.al. Chemistry
3
 Third edition 

 H i g h e r   E d u c a t i o n
© Oxford University Press, 2017. All rights reserved. 
 

 We should then use Equation 8.10,  

𝑝N2
= 𝑥N2

𝑝 = 0.495 × 1.2 atm = 0.59 atm 

 

11. How much faster is the rate of effusion of helium than carbon dioxide, when 

both gases are at the same temperature? 

Strategy 

Use Equation 8.21, which shows how the relative rates of effusion depend 

upon the molar mass of the molecules. 

Solution 

The molar masses of carbon dioxide and helium are 

𝑀CO2
= [12.01 + (2 × 16.00)]g mol−1 = 44.01 g mol−1 

𝑀He = 4.00 g mol−1 

Using Equation 8.21,  

Rate of effusion of He

Rate of effusion of CO2
= (

𝑀CO2

𝑀He
)

1/2

= (
44.01 g mol−1

4.00 g mol−1
)

1/2

= 3.31  

Thus, helium effuses at a rate that is over three times faster than carbon 

dioxide. 

 

12. Two identical flasks contain nitrogen gas at the same pressure.  Each has an 

identical pin-hole.  One flask is kept at 25°C while the other is heated to 

125°C.  Calculate the relative rates of effusion of nitrogen from the two 

flasks. 

Strategy 

Consider how temperature affects the rate at which molecules might escape 

through the pin-hole. 
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Solution 

The rate at which molecules collide with the pin-hole depends upon their 

speed.  The root mean square speed is given by equation 8.19, 

𝑐 = (
3𝑅𝑇

𝑀
)

1/2

 

Thus the rate at which the molecules escape is proportional to the square 

root of temperature 

𝑍 ∝ 𝑇1/2 

Effusion from the hotter flask, which is at a temperature T2, therefore occurs 

at a rate that is (T2/T1)1/2 times faster than from the colder falsk, which is at 

T1.  We must remember, however, that in using this expression, the 

temperatures should be expressed in kelvin, where 

𝑇1/𝐾 = 𝜃/℃ + 273.15 = 25 + 273.15 = 298  

𝑇2/𝐾 = 𝜃/℃ + 273.15 = 125 + 273.15 = 398  

Thus  

(
𝑇2

𝑇1
)

1/2

= (
398 K

298 K
)

1/2

= 1.16 

Effusion therefore occurs from the hotter flask at a rate that is 1.16 times 

faster than from the colder flask. 

 

13. An evacuated flask is filled with dry air and weighed.  The same flask is filled 

at the same temperature to the same pressure with moist air on a humid day.  

Will it weigh more, less, or the same?  Explain your answer. 

Strategy 

Apply Dalton’s law and consider the effect of changing the composition of the 

gas on the total mass. 
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Solution 

The mass of a mixture of gases is given by the sum of the masses of the 

components, which depend upon the amount and molar mass of each 

species.  Thus 

𝑚 = 𝑛1𝑀1 + 𝑛2𝑀2 +  … 

which we may write more succinctly as 

𝑚 = ∑ 𝑛𝑖𝑀𝑖

𝑖

 

We may express this in terms of the mole fraction of each component, 

𝑚 = 𝑛total ∑ 𝑥𝑖𝑀𝑖

𝑖

 

because the amount of each component is just 

𝑛𝑖 = 𝑥𝑖𝑛total 

The total amount of substance is the same in both the dry and moist air 

samples.  The ideal gas equation, Equation 8.5, shows that if the pressure, 

volume and temperature of two samples are the same, then they must 

contain the same amount of substance 

𝑛 =
𝑝𝑉

𝑅𝑇
 

Dry air is made up of 78% nitrogen, N2, and 21% oxygen, O2, along with some 

other minor constituents.  Thus  

𝑥N2
= 0.78 and 𝑥O2

= 0.21 

Moist air contains water, and so the mole fractions of nitrogen and oxygen 

are lower.  The molar mass of water is less than that of both nitrogen and 

oxygen.  Moist air therefore contains a proportion of lighter molecules than 

dry air.  As a result, the total mass of moist air is lower than that of dry air. 
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14. The equation for the complete combustion of methane is 

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) 

What volume of oxygen at SATP is needed to react exactly with 10 g of 

methane? 

Strategy 

Calculate the amount of methane that corresponds to 10 g.  Then consider 

the stoichiometry of the equation to deduce the amount of oxygen that is 

necessary to react completely.  Use the idea gas equation, Equation 8.5, to 

determine the volume of this amount of gas at SATP.  

Solution 

The molar mass of methane, CH4, is 

𝑀CH4
= [12.01 + (4 × 1.01)]g mol−1 = 16.05 g mol−1 

Thus, 10 g corresponds to an amount 

𝑛CH4
= 𝑚CH4

/𝑀CH4
= 10 g/16.05 g mol−1 = 0.6231 mol 

The chemical equation shows that the amount of oxygen required for 

combustion is double the amount of methane, so that 

𝑛O2
= 2 × 0.6231 mol = 1.246 mol 

Standard ambient temperature and pressure are 298 K and 101325 Pa, so 

applying the ideal gas equation, 8.5, gives 

𝑉 =
𝑛O2

𝑅𝑇

𝑝
=

1.246 mol × 8.3145 J K−1mol−1 × 298 K

101325 J m−3
= 0.0305 m3 

which, because 1 dm3 ≡ 10–3 m3, is equivalent to 30.5 dm3. 

15. The average (root mean square) speed of an oxygen molecule is 425 m s–1 at 

0°C.  Calculate the average speed at 100°C. 
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Strategy 

Use Equation 8.19, which expresses how the average speed of the molecules 

in a gas varies with temperature. 

Solution 

We know from Equation 8.19 that 

𝑐 = (
3𝑅𝑇

𝑀
)

1/2

 

and so 

𝑐 ∝ 𝑇1/2 

If we know the average speed c1, at a temperature T1, then we may calculate 

the average speed c2 at another temperature T2, since 

𝑐2 = 𝑐1 × (𝑇2/𝑇1)1/2  

The temperatures should be expressed in kelvin, so that for this example 

𝑇1/𝐾 = 𝜃/℃ + 273.15 = 0 + 273.15 = 273  

𝑇2/𝐾 = 𝜃/℃ + 273.15 = 100 + 273.15 = 373  

and therefore 

𝑐2 = 425 m s−1 × (373 K/273 K)1/2 = 497 m s−1 

 

16. A balloon that is porous to both gases is filled with nitrogen and placed in a 

box containing helium.  What will happen? 

Strategy 

Consider the effects of both effusion and diffusion on the gases. 

Solution 

Effusion is the escape of molecules through a porous membrane.  If the 

balloon is porous, the helium and the nitrogen molecules will effuse through 
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the membrane until the composition and pressure both inside the balloon 

and outside the balloon are equal.  The rate of effusion is inversely 

proportional to the square root of the molar mass of the molecules.  Heavy 

molecules therefore effuse more slowly than light molecules.  The 

probability of an individual helium atom effusing into the balloon is 

therefore greater than the probability of an individual nitrogen molecule 

effusing in the opposite direction.  The absolute rate of effusion of the two 

species will, however, depend upon the relative amounts of the two gases 

present.   

The driving force for this process is thermodynamic because entropy favours 

the mixing of ideal gases.  Eventually, the composition of the balloon and the 

box become equal.  Even at equilibrium, however, molecules still effuse 

across the membrane.  The helium molecules effuse more quickly than 

nitrogen molecules, but the number escaping in each direction is the same.  

The system is therefore at a dynamic, rather than static equilibrium.   

 

17. The atmospheric pressure and temperature both fall as the altitude 

increases.  The total pressure at a height of 20 km is about 5% of that of the 

Earth’s surface (that is, at sea level) and the temperature is about –55°C.  

Estimate the collision frequency and the mean free path of oxygen molecules 

under these conditions.  (for oxygen at this temperature, the mean speed, 

𝑐̅ = 380 m s−1.) 

Strategy 

Use Equation 8.22 to calculate the collisional frequency.   

Solution 

The collisional frequency is given by Equation 8.22  

𝑍 = √2𝑁𝐴𝑐̅𝜎 ×
𝑝

𝑅𝑇
 

The collision cross section for oxygen is given in Table 8.3 as 
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𝜎 = 0.40 nm2 = 0.40 × 10−18m2 

The ambient pressure at the Earth’s surface is 101325 Pa, so that at an 

altitude of 20 km,  

𝑝 = 0.05 × 101325 Pa = 5067 Pa = 5067 J m−3 

A temperature of –55°C is equivalent to 

𝑇/𝐾 = 𝜃/℃ + 273.15 = −55 + 273.15 = 218  

Substituting into Equation 8.22 then gives  

𝑍 = √2𝑁𝐴𝑐̅𝜎 ×
𝑝

𝑅𝑇
 

= √2 × 6.022 × 1023mol−1 × 380 ms−1 × 0.40 × 10−18m2

×
5067 J m−3

8.3145 J K−1mol−1 × 218 K
 

= 3.6 × 108s−1 

The mean free path is related to the collisional frequency and mean speed 

through Equation 8.23.  Thus 

𝜆 = 𝑐̅/𝑍 = 380 m s−1/3.6 × 108s−1 =  1.1 × 10−6 m 

 

18. Argon has a collision cross-section of 0.36 nm2.  At 0°C, what pressure is 

needed so that its mean free path becomes equal to the diameter of the 

molecules? 

Strategy 

Calculate the diameter of an argon atom from the cross-sectional area.  

Rearrange equation 8.23, using the diameter of the atoms as the value for the 

mean free path. 
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Solution 

The collision cross section may be considered as the cross-sectional area of 

the atoms and is therefore related to diameter of the atoms through 

𝜎 = π𝑑2 

Thus 

𝑑 = √𝜎/ π 

= √0.36 nm2/ π 

= √0.36 × 10−18m2/ π 

= 3.4 × 10−10m 

Using a rearranged version of Equation 8.21 gives 

𝑝 =
𝑅𝑇

√2𝑁A𝜎𝜆
=

𝑅𝑇

√2𝑁A𝜎𝑑
 

=
8.3145 J K−1mol−1 × 273 K

√2 × 6.022 × 1023mol−1 × 0.36 × 10−18m2 × 3.4 × 10−10m
 

= 22 × 106 J m−3 = 22 MPa 

which is equivalent to  

𝑝 = 22 × 106Pa/101325 Pa atm−1 = 220 atm 

 

19. Suggest why there is little hydrogen or helium in the atmosphere around the 

Earth or Mars, although these gases form the major constituent of the 

atmosphere of huge planets such as Jupiter or Saturn. 

Strategy 

Consider the effect of gravity on the composition of the atmospheres of the 

planets. 

Solution 

The atmospheres of the planets arise because gravitational attraction 
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prevents the gases from escaping.  Atmospheric pressure decreases with 

altitude because the attractive force becomes weaker with the distance from 

the surface of the planet. 

 The attractive force depends upon the mass of the molecules and the mass 

of the planet.  Light molecules such as hydrogen or atoms such as helium are 

attracted only weakly by small plants such as the Earth or Mars.  For heavier 

planets, the gravitational attraction is much stronger, meaning that light 

molecules and atoms remain trapped.   

 

20. The atmosphere of a spacecraft with volume 27 m3 consists of 80% helium 

and 20% oxygen by volume. The gases continually escape by effusion 

through small leaks in the walls. The leak amounts to 1000 Pa per day. The 

temperature inside the spacecraft is 20 C. What masses of helium and 

oxygen must be carried to replace the gas that leaks during a 10 day mission? 

Strategy 

You can find the total pressure of gas that will be lost as well as the relative 

rates of effusion of the two gases. Then, you can use the ideal gas equation to 

calculate the number of moles lost. 

Solution 

The total rate of loss of the gases is 1000 Pa day-1 so for a 10 day mission, 

10000 Pa could be lost. The relative amounts of He and O2 can be calculated 

from the relative rates of effusion of the two gases. The relative rates of 

effusion are inversely proportional to the relative molar/atomic masses.  

1 1
2 2

1
2 2

O

2 He

1

1

Rate of effusion of He 32.  g mo0
8 2.83

Rate of ef

l

 g mofusion o  0 lf O 4.

M

M





   
      

    

Hence for each 1 mol of O2 that escapes, 2.83 mol of He will escape. The 

pressures of each gas that escape are therefore 2611 Pa of O2 and 7389 Pa of 
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He respectively. Using the ideal gas equation to calculate the number of 

moles lost: 

  s  o    
pV

pV nRT n
RT

 

3

2 -1 -1

2611 Pa  27 m
 For O   28.9 mol

8.314 J K  mol 293K

pV
n

RT


  



 

Multiplying by the relative molar mass of 32 g mol-1, 28.9 mol =  926 g 

3

-1 -1

7389 Pa  27 m
 For He  81.9 mol

8.314 J K  mol 293K

pV
n

RT


  



 

Multiplying by the relative molar mass of 4 g mol-1, 81.9 mol =  328 g  

Total mass of gas needed = 1254 g. 

 

21. (a) State (i) the ideal gas equation (ii) the Van der Waal’s equation of state. 

Explain how the additional terms in the Van der Waal’s equation account for 

the actual behaviour of real gases.  

(b) Without performing any numerical calculations, show that, in the limit of 

high temperatures and low pressures, the van der Waals and ideal gas 

equations are identical. 

Strategy 

Quote equations 8.5 and 8.25, and compare the additional terms. Consider 

the effect on the volume of the gas of high temperatures and pressures.  

Simplify the Van der Waals equation in this limit. 

Solution 

(a) (i)  

𝑝𝑉 = 𝑛𝑅𝑇 
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(ii)                                                      
2

( )
n

p a V nb
V

  
     

 

The a(n/V)2 term accounts for the intermolecular attractions in real gases, 

which reduce the force with which molecules can collide with the wall of the 

container. This term makes up for the slightly reduced pressure. The nb term 

corrects for the fact that molecules in a real gas do have a volume, and so 

there is less volume in which molecules can actually move. 

(b) High temperatures and low pressures result in relatively high volumes.  

We can see this most easily by rearranging the ideal gas equation, Equation 

8.5, 

𝑉 = 𝑛𝑅𝑇/𝑝 

so that 

𝑉 ∝ 𝑇/𝑝 

The van der Waals equation, Equation 8.26 

(𝑝 + 𝑎(𝑛2/𝑉2))(𝑉 − 𝑛𝑏) = 𝑛𝑅𝑇 

 includes two additional terms in the volume.  In the limit of high volume, the 

additional term in the first bracket becomes negligible, because as V → ∞, 

1/V2 → ∞.  In the same way, the additional term in the second bracket also 

becomes insignificant, because as V becomes so much bigger than nb,  

(V – nb) → V. 

 

22. Dry air with the following composition is used to fill a SCUBA cylinder for a 

dive. 

Gas Composition of dry air by volume 

N2 78% 

O2 21% 
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Ar 1% 

 (a)  At 10 m depth, a diver experiences an external pressure of 2 atm.  Write 

an expression for the total pressure of the air in terms of the partial 

pressures of N2, O2 and Ar. 

(b)  What is the molar percentage of oxygen in the air inhaled at 2 atm? 

(c)  What is the partial pressure of O2 in air inhaled at: (i) 1 atm; (ii) 2 atm. 

(d)  How does the number of molecules of O2 inhaled per breath at 10 m 

depth compare with the number inhaled per breath at sea level?  Suggest 

why some deep-sea divers dive with a gas mixture containing 10% oxygen. 

Strategy 

Consider how partial pressure depends upon the total pressure. 

Solution 

(a)  Using Dalton’s law, the total pressure of the air is given by the sum of the 

partial pressures of the individual components 

𝑝 = 𝑝N2
+ 𝑝O2

+ 𝑝Ar 

(b)  The composition of air given may be rewritten in terms of mole fractions 

as  

𝑥N2
= 0.78,    𝑥O2

= 0.21,    𝑥Ar = 0.01 

The molar percentage of each component absorbed is independent of the 

total pressure, so that at 2 atm, the air still contains 21% oxygen. 

(c)  The partial pressure of oxygen is  

𝑝O2
= 𝑥O2

𝑝 

so that at the surface, when the total pressure is p = 1 atm,  

𝑝O2
= 0.21 × 1 atm = 0.21 atm 

and when the total pressure is p = 2 atm,  

𝑝O2
= 0.21 × 2 atm = 0.42 atm 
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(d)  The calculations show that the partial pressure of oxygen is greater 

underwater than at the surface, because of the increase in the total pressure.  

Filling the SCUBA tank with air with a lower proportion of oxygen would 

help to correct for this change. 

23. A 10 dm3 SCUBA cylinder is filled with air to a pressure of 300 atm at a 

temperature of 20°C (293 K). 

(a)  Calculate the amount, in moles of gas in the cylinder, assuming the air 

behaves as an ideal gas. 

(b)  When the diver jumps into cold water at 278 K, the pressure gauge 

shows an alarming drop in pressure.  Explain the reason why and calculate 

the new pressure inside the cylinder. 

(c)  In fact, the compressed gases do not behave as ideal gases.  Explain why.  

Use the van der Waals equation (for air, a = 0.137 Pa m6 mol–2 and 

b = 3.7 × 10–5 m3 mol–1) to show that the amount of air in the cylinder is 

115 mol.  In view of your answer to part (a) above, what are the implications 

of this for divers?  

 Strategy 

Use the ideal gas equation, Equation 8.5, to determine the amount of gas in 

the cylinder, remembering to convert all values to SI units. Repeat the 

calculation using the van der Waals equation, Equation 8.25. 

Solution 

(a)  We may rearrange the ideal gas equation, Equation 8.5, to give an 

expression for the amount of gas 

𝑛 =
𝑝𝑉

𝑅𝑇
 

We may use the conversion factor given in Table 8.1 to convert the pressure 

to SI units, so that 

𝑝 = 300 atm × 101325 Pa atm−1 = 30.4 × 106 Pa = 30.4 MPa 

A volume of 10 dm3 is equivalent to 
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𝑉 = 10 × 10−3m3 = 10−2m3 

so that 

𝑛 =
30.4 × 106 Pa × 10−2m3

8.3145 J K−1mol−1 × 293 K
= 125 mol 

(b)  The sudden drop in temperature causes a decrease in the pressure of the 

gas because the molecules have less thermal energy.  We may apply the ideal 

gas equation, Equation 8.5, to determine the new pressure.  If 

𝑝𝑉 = 𝑛𝑅𝑇 

so that  

𝑝 ∝ 1/𝑇 

then for constant amount and volume, 

𝑝1

𝑇1
=

𝑝2

𝑇2
 

then 

𝑝2 = 𝑝1 ×
𝑇2

𝑇1
= 300 atm ×

278 K

293 K
= 285 atm 

which is equivalent to 28.8 MPa. 

(c)  Compressed gases do not behave in an ideal way because, when the 

molecules are close together, the magnitude of the attractive interactions 

becomes significant and the volume taken up by the finite size of the 

molecules becomes an appreciable proportion of the total volume.    

The van der Waals equation, Equation 8.25, is actually a cubic equation in n.  

It is thus not possible to rearrange this equation to give an expression for n.  

Instead, it is simpler to assume the revised value for the amount given, 

n = 115 mol, and show that this is consistent with a pressure of 300 atm. 



Solutions manual for Burrows et.al. Chemistry
3
 Third edition 

 H i g h e r   E d u c a t i o n
© Oxford University Press, 2017. All rights reserved. 
 

𝑝 =
𝑛𝑅𝑇

𝑉 − 𝑛𝑏
−  𝑎 (

𝑛

𝑉
)

2

 

=
115 mol × 8.3145 J K−1mol−1 × 293 K

10−2m3 − 115 mol × 3.7 × 10−5m3mol−1
− 0.137 Pa m6mol−1 (

115 mol

10−2m3
)

2

 

= 30.4 × 106Pa 

which we already know is equivalent to a pressure of 300 atm.  The cylinder 

therefore contains less air than might be expected from a simple calculation 

based on the ideal gas equation. 

24. The space between the stars in the universe contains a mixture of gases at 

very low pressure as well as some dust.  The gas is mainly hydrogen with a 

little helium, but many other molecules have also been detected in tiny 

amounts (see Chapter 4, p.167).  For a helium atom, the collisional cross 

section  = 0.21 nm2.  The conditions in interstellar space are around 

T = 10 K and p = 1  10–18 atm. 

(a)  Calculate the mean free path, , of helium atoms at SATP. 

(b)  Estimate the value of for helium atoms in interstellar space.  (For the 

atoms at 10 K, c = 230 m s–1.)

Strategy 

Use Equation 8.23 to determine the mean free path under the conditions 

given.  Calculate the time between collisions as the reciprocal of the 

collisional frequency. 

Solution 

A collision cross section of 0.21 nm2 is equivalent to 0.21 × 10–18 nm2, 

because 1 nm2 ≡ 10–18 m2.  The mean free path of the molecules within a gas 

at standard ambient temperature and pressure may therefore be calculated 

using Equation 8.23 

𝜆 =
𝑅𝑇

√2𝑁A𝜎𝑝
 

=
8.3145 J K−1mol−1 × 298 K

√2 × 6.022 × 1023mol−1 × 0.21 × 10−18 nm2 × 101325 J m−3
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= 137 × 10−9m 

= 137 nm 

(b)  In order to calculate the mean free path under the conditions in the 

interstellar medium, it is not necessary to repeat the entire calculation .  We 

know that 

𝜆 ∝ 𝑇/𝑝 

so, if, in the interstellar medium, the pressure is 10–18 atm /1 atm = 10−18 

times less, and the temperature 10 K / 298 K ≈  0.034 times less, then the 

mean free path may be estimated as 

𝜆 = 137 × 10−9 m × (0.034/ 10−18) = 4.7 × 109m 

(c)  The time between collisions is the reciprocal of the collisional frequency 

𝑡 = 1/𝑍 

Mean free path and collisional frequency are related through the mean speed 

𝜆 = 𝑐̅/𝑍 

Combining these two equations, and substituting gives 

𝑡 = 𝜆/𝑐̅ = 4.7 × 109m/230 m s−1 = 20 × 106s 

25. Sketch graphs to show how the distribution of molecular speeds differs 

between 

(a)  helium at 100 K and helium at 300 K 

(b)  helium at 100 K and xenon at 100 K  

 Strategy 

Consider the effects of temperature and molecular mass on speed, as shown 

in figures 8.12(b) and 8.12(a). 

Solution 

(a)  <Unnumbered figure 8.1, as in back-of-book answers> 
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(b)  <Unnumbered figure 8.2, as in back-of-book answers> 

26. Using the kinetic theory of gases, it can be shown that pV = 
1

3
 nNAmc2. 

(a)  Explain each of the terms in this equation. 

(b)  Show how this equation is equivalent to the ideal gas equation, pV = nRT. 

(c)  Using these equations as examples, explain the difference between an 

empirical approach and a theoretical approach to modelling a chemical 

system. 

 Strategy 

Use equation 8.14 to relate the expression given in the question to the ideal 

gas equation. Think about how both the empirical and theoretical equations 

are derived. 

Solution 

(a)  p is the pressure of the gas, in Pa, V is the volume in m3, n is the number 

of moles of gas, NA is Avogadro’s constant, m is the mass of a molecule and c 

is the average molecular speed. 

(b)  The left hand side of both equations equals pV, therefore we can say that 

the right hand sides equal each other, so that 

1

3
 nNAmc2 = nRT 

n appears on both sides, so can be cancelled, leaving 

1

3
 NAmc2 = RT 

The kinetic energy of a molecule can be expressed by equation 8.14, which 

can be rearranged as follows; 

EKE =  
1

2
 mc2 

                                                            2 EKE = mc2 

Substituting this into the theory-derived equation above, we get 
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pV = 
1

3
 nNA (2 EKE) 

Since kinetic energy is proportional to temperature, and NA is a constant, this 

can be simplified to say that 

pV = constant x T 

which is equivalent to the ideal gas equation, with R as the constant.  

 (c)  The ideal gas equation is derived from experimental observations, and 

introduces R as a proportionality constant.. The theoretical approach starts 

off by considering the momentum of a single molecule colliding with the wall 

of a container, and applies physical laws to the behaviour of molecules in an 

ideal gas to rrive at an expression relating P, V and T. 

27. Consider the following gases at SATP: 

argon, krypton, nitrogen, methane, hydrogen chloride, chlorine, carbon 

dioxide, helium 

(a)  Which gas would be expected to most closely follow ideal behaviour? 

(b)  Which gas would deviate most from ideal behaviour? 

(c)  Which gas would have the highest and lowest root mean square speeds? 

(d)  Which gas would effuse most slowly? 

 Strategy 

Think about the assumptions made in the ideal gas equation, and what 

makes a gas ‘ideal’. Look at equation 8.19 to see the relationship between 

molecular mass and the root mean square speed of a gas, and equation 8.20 

for the rate of effusion. 

Solution 

(a)  For an ideal gas we assume the molecules have no volume and no 

intermolecular attractions. Therefore the most ideal gas will have a small 
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volume, be non-polar and have few electrons to create weak Van der Waals 

forces. Therefore helium would most closely follow ideal behaviour. 

(b)  A gas with large volume and strong intermolecular forces deviates from 

ideal behaviour, so in this case the answer is hydrogen chloride, because its 

molecules are polar and therefore have the greatest intermolecular forces.  

 (c)  The root mean square speed is inversely proportional to molecular 

mass, so helium, with the lowest molecular mass, has the highest root mean 

square speed. Carbon dioxide has the greatest molecular mass, and so the 

lowest root mean square speed. 

 (d)  The rate of effusion is inversely proportional to the square root of 

molecular mass, so carbon dioxide will effuse most slowly. 

28. The molecular speeds in a sample of 100 molecules are distributed as 

follows: 

Number of molecules  10 20 40 15 10 5 

Speed  / m s
-1

   60 80 100 120 140 160 

 

(a)  What is the most probable speed? 

(b)  Calculate the mean speed of the molecules in the sample 

(c)  Calculate the r.m.s speed of the molecules in the sample  

 Strategy 

The mean speed is the sum of the molecular speeds divided by the total 

number of molecules. To find the root mean square speed, use the sum of 

each molecule’s speed squared, divide by the total number of molecules, and 

take the square root of the answer.  

Solution 

(a)  The most probable speed is that which is measured most often: 100 m s-

1. 
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(b)  Sum the speeds of all molecules, and then divide by the total number of 

molecules. 

(10 x 60 m s-1) + (20 x 80 m s-1) + (40 x 100 m s-1) + (15 x 120 m s-1) + (10 x 140 

m s-1) + (5 x 160 m s-1) = 10200 m s-1. 

10200 m s-1/100 = 102 m s-1 

 (c)  Firstly sum the squares of each molecule’s speed. 

10 (60 m s-1)2 + 20 (80 m s-1)2 + 40 (100 m s-1)2 + 15 (120 m s-1)2 + 10 

(140 m s-1)2 + 5 (160 m s-1)2 = 1104000 m2 s-4 

Now divide this by the total number of molecules, and take the square root of 

the answer. 

1104000 m2 s-4/ 100 = 11040 m s-1 

                                      (1104 m2 s-4)1/2 = 105 m s-1 

29. The density of nitrogen gas in a container at 300 K and 1.0 bar pressure is 

1.25 g dm-3. 

(a)  Calculate the r.m.s speed of the molecules. 

(b)  At what temperature will the r.m.s speed be twice as fast? 

 Strategy 

Use equation 8.19 to calculate the root mean square speed, being careful 

with units. Look at the relationship between the root mean square speed and 

temperature. 

Solution 

(a)  The molar mass of nitrogen is 28.0 g mol-1, which is equivalent to 0.028 

kg mol-1. Substituting into equation 8.19, using T = 300 K, we get     

1/ 2
3RT

c
M

 
   

 

  = [(3 x 8.314 J mol-1 K-1 x 300 K)/0.028 kg mol-1 ]1/2 
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  = 517 m s-1  

(b)  Equation 8.19 shows that the root mean square speed is proportional to 

the square root of temperature.  Therefore if c is twice as large, c2 is four 

times greater, so the temperature would need to be four times greater, so T = 

1200 K. 

*30. A sample of gaseous uranium hexafluoride, UF6, is held at a temperature of 

300 K and a pressure of 0.1 mbar. The collision diameter of UF6 is 0.40 nm.   

(a)  What is the r.m.s speed of the molecules? 

(b)  Estimate the collision frequency and mean free path under these 

conditions.  

 Strategy 

Use equation 8.19 directly to find the r.m.s. speed. Calculate the collision 

cross sectional area, and then use equation 8.22, converting to standard 

units first. Use the root mean square speed and the collision frequency to 

find the mean free path. 

Solution 

(a)  The value of M for UF6 is 352 g mol-1 = 0.352 kg mol-1. Substituting this 

into equation 8.19 gives:
  

1/ 2
3RT

c
M

 
   

 

= [(3 x 8.314 J mol-1 K-1 x 300 K)/ 0.352 kg mol-1)]1/2 

                  c = 146 m s-1 

(b)  The cross sectional area is calculated using  

𝜎 = 𝜋 d2 

                = 𝜋 x (0.4 x 10-9  m)2 

               = 5.03 x 10-19 m2 



Solutions manual for Burrows et.al. Chemistry
3
 Third edition 

 H i g h e r   E d u c a t i o n
© Oxford University Press, 2017. All rights reserved. 
 

Substitute this value into the equation for collision frequency. Note that 1 bar 

= 1 x 105 Pa, and so 0.1 x 10-3 bar = 10 Pa 

 

= √2 (6.02 x 1023 mol-1) x (146 ms-1) x (5.03 x 10-19 m2) x 10 Pa/(8.314 J              

mol-1 K-1 x 300 K) 

= 250 x 103 s-1 

The mean free path is obtained from the expression  

λ = c / Z 

= 146 ms-1 / 250 x 103 s-1 

= 5.8 x 10-4 m 

31. (a)  Explain how the fact that gases such as nitrogen or carbon dioxide can be 

liquefied by applying high pressure shows that the ideal gas equation can 

only be an approximation. 

(b)  Why is a lower pressure needed to liquefy CO2 than for N2? 

 Strategy 

Consider the intermolecular forces in gases and liquids, and the assumptions 

made about them in the ideal gas equation. What is required to liquefy a gas? 

Solution 

(a)  The fact that a gas can be liquefied shows that there are intermolecular 

forces between gas molecules. If this were not the case, as assumed in the 

ideal gas equation, it would not be possible to liquefy the gas. 

(b)  CO2 is a less ‘ideal’ gas than N2. It has a larger mass and contains polar 

bonds, therefore there are greater Van der Waals forces between molecules 

of CO2 than between molecules of N2. If there are more intermolecular 

attractions, it will be easier to liquefy the gas by compression.  
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32. Predict which of the following substances will have (i) the highest and (ii) 

the lowest values of the van der Waals constants 'a' and 'b'. 

N2, He, NO2 

Strategy 

Consider what each of the terms represents and relate them to the 

molecular properties of the molecules of the three gases. 

Solution 

The value of  'a' is related to the strength of intermolecular attractions in 

the atom/molecules. He and N2 are non-polar and interact only through van 

der Waals interaction. NO2 has two (slightly) polar bonds due to 

electronegativity differences and so will also have dipolar interactions. 

Therefore NO2 would have the largest 'a'. The electrons in He are closer to 

the nucleus than those in N2 and so He is less polarisable and would have 

the weakest van der Waals interactions and hence the lowest 'a' value. 

The value of  'b' is related to the actual volume occupied by the molecules 

and hence the molecular size. He is the smallest of the three molecules (so 

the lowest 'b') while NO2 is the biggest and so has the highest 'b' value. 

 

 

33. Calculate the temperature at which 20 mol of helium would exert a 

pressure of 120 atm in a 10 dm3 cylinder.  a= 0.034 dm6 atm mol-2  b = 

0.024 dm3 mol-1 using both the ideal gas equation and the van der Waals 

equation. 

Strategy 

You can substitute the data into both the ideal gas equation and van der 

Waals’ equation, remembering to perform any relevant unit conversions to 

maintain consistency. 
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Solution 

For the ideal gas equation: 

  s  o    
pV

pV nRT T
nR

 
 

In this problem, it is more convenient to use the value of R in different 

units, R = 0.08206 dm3 atm K-1 mol-1 (given in the text). Alternatively, the 

data could be converted to SI units as in the worked examples in the text.. 

3

3 -1 1

atm dm
    K

mol  dm

1

 

20 10 
731 

 atm 20 0.0 K mo8206 l

pV
T

nR 


  


 

For the van der Waals equation: 

 
 

2

2

         so       

n
p a V nb

n V
p a V nb nRT T

V nR

 
   

   
    

 
 

 

 

 

2

6 -2 3 3 -1

3

3 -1 1

2
mol

atm dm atm mol dm mol dm mol
d

          

20 
120 0.034 10 20 0.024 

10 
697

20 0.08206 

m
K

mol  dm  atm K mol

n
p a V nb

V
T

nR

T


  
       



  
      




 

 

 

 


