Answer Key for Ch14 Exercise1: Derive $\hat{\beta}$

September 30, 2019

1. Apply the logic developed in this chapter to the model $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}$. Derive the OLS estimate for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.
(a) Write out the sum of squared residuals for the model

$$
\sum \hat{\epsilon}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)^{2}
$$

(b) We minimize the sum of squared residuals by taking the derivatives with respect to $\hat{\beta}_{0}$ (one equation) and $\hat{\beta}_{1}$ (a second equation) and setting them to zero. ${ }^{1}$ The estimates are the values which produce a derivative of zero.

$$
\begin{aligned}
& \frac{\partial \sum \hat{\epsilon}_{i}^{2}}{\partial \hat{\beta}_{0}}=(-2) \sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)=0 \\
& \frac{\partial \sum \hat{\epsilon}_{i}^{2}}{\partial \hat{\beta}_{1}}=(-2) \sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}\right)\left(X_{i}\right)=0
\end{aligned}
$$

(c) Solving for $\hat{\beta}_{0}$ is relatively straightforward. Divide both sides by (-2) and do the following steps:

$$
\begin{aligned}
\sum Y_{i}-\sum \hat{\beta}_{0}-\sum \hat{\beta}_{1} X_{i} & =0 \text { Separate the sum into components } \\
\sum Y_{i}-\sum \hat{\beta}_{1} X_{i} & =\sum \hat{\beta}_{0} \text { Move } \hat{\beta}_{0} \text { to RHS } \\
\sum Y_{i}-\hat{\beta}_{1} \sum X_{i} & =N \hat{\beta}_{0} \text { Pull constants out of summations } \\
\frac{\sum Y_{i}}{N}-\hat{\beta}_{1} \frac{\sum X_{i}}{N} & =\hat{\beta}_{0} \text { Divide by } N \\
\bar{Y}-\hat{\beta}_{1} \bar{X} & =\hat{\beta}_{0} \text { Use definition of mean }
\end{aligned}
$$

(d) To solve for $\hat{\beta}_{1}$ divide both sides of the derivative with respect to $\hat{\beta}_{1}$ by (-2)

[^0]and do the following steps:
\[

$$
\begin{aligned}
\sum Y_{i} X_{i}-\sum \hat{\beta}_{0} X_{i}-\sum \hat{\beta}_{1} X_{i}^{2} & =0 \text { Separate the sum into components } \\
\sum Y_{i} X_{i}-\sum\left(\bar{Y}-\hat{\beta}_{1} \bar{X}\right) X_{i}-\sum \hat{\beta}_{1} X_{i}^{2} & =0 \text { Substitute for } \hat{\beta}_{0} \\
\sum Y_{i} X_{i}-\sum \bar{Y} X_{i} & =\hat{\beta}_{1}\left(\sum X_{i}^{2}-\bar{X} \sum X_{i}\right) \text { Simplify } \\
\hat{\beta}_{1} & =\frac{\sum Y_{i} X_{i}-\sum \bar{Y} X_{i}}{\sum X_{i}^{2}-\bar{X} \sum X_{i}} \text { Solve for } \hat{\beta}_{1}
\end{aligned}
$$
\]

(e) We prefer the equation for $\hat{\beta}_{1}$ to be in the more intuitive mean-deviated form.
i. First substitute for $\sum X_{i}=N \bar{X}$. Be careful to note that $\sum Y_{i} X_{i}$ cannot be simplified; we can only use this for terms where the only thing in the summation is X or X times a constant.

$$
\hat{\beta}_{1}=\frac{\sum Y_{i} X_{i}-N \overline{Y X}}{\sum X_{i}^{2}-N \bar{X}^{2}}
$$

ii. Next use facts that $\sum X_{i}=N \bar{X}$ and $\sum Y_{i}=N \bar{Y}$ to rewrite $\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)$, which is the form we are seeking for the numerator of the $\hat{\beta}_{1}$ equation.

$$
\begin{aligned}
\sum\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right) & =\sum Y_{i} X_{i}-\bar{X} \sum Y_{i}-\bar{Y} \sum X_{i}+N \overline{Y X} \\
& =\sum Y_{i} X_{i}-N \overline{X Y}-N \overline{Y X}+N \overline{Y X} \\
& =\sum Y_{i} X_{i}-N \overline{X Y}
\end{aligned}
$$

which is the value we had in the numerator of $\hat{\beta}_{1}$ in part (d) above, meaning we can use $\sum\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)$ in the numerator.
iii. Do similar steps for the denominator of the $\hat{\beta}_{1}$ equation.

$$
\begin{aligned}
\sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right) & =\sum X_{i}^{2}-2 \bar{X} \sum X_{i}+N \bar{X}^{2} \\
& =\sum X_{i}^{2}-2 N \bar{X}^{2}+N \bar{X}^{2} \\
& =\sum X_{i}^{2}-N \bar{X}^{2}
\end{aligned}
$$

which is the value we had in the denominator of $\hat{\beta}_{1}$ meaning we can use $\sum\left(X_{i}-\bar{X}\right)^{2}$ in the denominator, meaning that

$$
\hat{\beta}_{1}=\frac{\sum\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}
$$

[^0]: ${ }^{1}$ These are often referred to as "normal equations" (as if we haven't used the word normal enough in statistics).

