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Chapter 8  

Determinate and indeterminate errors and cost 

We saw in Chapter 5, Section 5.6 that there are a number of sources of error. The 

random or indeterminate errors are discussed in the requisite chapters 5, 7, 8 and 

later in 9. However, when it comes to determinate errors (see chapters 7 and 9), i.e. 

those associated with performing a process or operation that arise due to a fault in 

the way it is carried out, then there are three that can immediately be considered.  

i) that due to the method employed, ii) that due to the instrumental technique used 

and iii) that due to the person involved. We will see in Chapter 9 that quality 

assurance, validation and peer review approaches can help us to identify these 

“systematic” errors that introduce “bias” and to some extent, address the determinate 

errors associated with the analytical approach or process. 

 

Now, it is noted that the cost implication from failing to identify both the magnitude of 

the errors in the process and what is acceptable, can be financially disastrous. In 

terms of cost, it can often be the sample preparation and measurement steps that 

dominate the analytical process; hence, more samples that are measured will 

provide greater confidence in the values obtained but at a cost, both in time and 

money. The requirement of employing validated, quality assured procedures is not in 

question but an important consideration must always be the magnitude of the 

indeterminate errors. Section 8.2.1 introduces this very topic but one further 

approach within this area is that of considering the overall required level of 

confidence in the values obtained, the error associated with each step in the 

processes undertaken and the subsequent evaluation of the analytical approach to 

be taken, to meet these requirements. 

For example, we saw in equation 8.1 that when considering the variance of the total 

process: 

s2
tot = s2

sam + s2
sp + s2

meas  

And that in many cases: 
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s2
sam >> s2

sp  ≥ s
2
meas 

Therefore if the sampling variance is going to dominate the associated process 

errors then the acceptable error for the total analytical process (evaluated or 

identified from asking the right questions early on) will have a bearing upon the costs 

involved; i.e. the number and size of samples acquired, the number of samples to be 

prepared, the number of samples to be measured using a particular analytical 

technique or methodology. Some analytical approaches are governed by regulations, 

legislation or guidelines and therefore will impose or dictate the requisite procedures. 

However, within the broader scheme of solving the analytical problem, the overall 

requirements of an evaluation within particular limits will still allow some flexibility of 

process to be cost effective; be it for the client and / or the laboratory! 

 

 

 Feedback on problem 1 

 Given from equation 8.1 that the variances are additive, then 

s2
tot = s2

sam + s2
sp + s2

meas  

By inserting the requisite values; s2
tot is: 

(12)2 + (1.8)2 = 14(7) (mg / kg)2 

and stot = 12.(1) mg / kg 

 

If a total error of less than 4 mg / kg is required then the equation shows: 

(4)2 = s2
sam + (1.8)2 ; 

 

Given that the s2
sp + s2

meas steps will vary very little and s2
sam >> s2

sp  ≥ s2
meas in 

comparison. Then 

ssam = 3.5(7) mg / kg 

Therefore the improvement in s2
tot down to < 4 mg / kg requires ssam going from 12 

mg / kg down to 3.5(7) mg / kg. This improvement would only be acquired from the 

processing and measurement of many more samples; as demonstrated in the later 

Problem 2 to be tackled.  
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Feedback on Problem 2  

Using our statistical formulae from Chapters 7 and 8, and the equation discussed; 

i.e. n ≅ 4.2 [sr / srel ]
2  

We obtain the following from our data. 

Statistical Evaluation Nitrogen Phosphorus 

Mean [mg / kg] 6.0(2) 15.2(3) 

Median [mg / kg] 5.3(3) 15.6(1) 

Std Dev [mg / kg] 2.1(7) 3.3(2) 

RSD (factor) 0.36(0) 0.21(8) 

% [RSD factor x 100] 36.(0) 21.(8) 

Required RSD % 15 10 

[sr / srel ] 2.4(0) 2.1(8) 

[sr / srel ]
2 5.7(6) 4.7(5) 

~n 24.(2) 20.(0) 

minimum value of ~n 24 to 25 19 to 20 

Full calculation (and 

minimum) value for n 
23 19 

 

It is noted that the nitrogen and phosphorus values from the 5 initial samples 

processed have broad range RSDs of 36% and ~22%. The factor [sr / srel ] in our 

equation for calculating ‘n’ means that we can use our relative standard deviations  

either as a factor or as a %. This ratio demonstrates the improvement required for 

our nitrogen and phosphorus measurements (2.4 x and 2.2 x respectively), while the 

minimum whole number of samples to be processed for each, in addition to the 5 

already processed, demonstrates 20 more are required for nitrogen and 15 more for 

phosphorus. The values for n overall are also in the range 20 to 30 and therefore our 

approximation is acceptable for ‘t’. Using equation 8.24 and Figure 8.1 provides us 

with the full calculation ‘n’ values, as shown in the table of results for comparison. 



Evans and Foulkes, Analytical Chemistry: A Practical Approach 1e 
 

 
 

 
© Oxford University Press, 2019.  
 

Of course, with at least 25 samples to prepare, it may be possible to measure both 

the N and the P on each processed sample or it may be that two separate sample 

preparation techniques would be required, one for 20 samples and one for 25 

samples. As previously noted, in terms of cost, it can often be the sample 

preparation and measurement steps that dominate the analytical process; hence, the 

more samples measured will provide greater confidence in the values obtained but at 

a cost, both in time and money.  

 

To calculate the size of the circular boundary around each sample, we use equation 

2.2 and then 2.1, where n = 30 and area A = 20,000 m2. The grid size is therefore 

25.(8) m and the radius of the circular boundary is 15.(2) m. 

 

What is “acceptable” and “fit for purpose” 

Finally, on this topic, it is noted that a farmers requirements and “what is acceptable” 

will not necessarily be the same as that of, say a parliamentary committee on food 

and nutrition. While the committee would require a summary evaluation that they can 

(intellectually) deal with, they will also expect for public safety, a level of rigorous 

evaluation according to statutory requirements that have included a full statistical 

approach with error limitations to provide an accepted level of confidence in any 

values they set. 

Overall, It is important that the time and effort expended in achieving ‘the required’ or 

‘an acceptable’, level of confidence values and hence the costs associated in this 

endeavour are all considered. An old expression for such a process is: “chemist, be 

aware and beware of what you are asked for!”. 

 

Feedback on Problem 3 

As the two different varieties of chickpea have the same particle size and density, 

then this is a particle number problem. Hence, we can use equation 8.16. to 

calculate the first part of the problem. 

Here, p = 100 / 10100; because 10 tonne = 10,000 kg and the contaminant is 100 

kg. 
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Therefore p = 0.0099(0) and our equation becomes: 

 

n = [1- 0.0099(0)] / 0.0099(0) x (0.01)2] 

n = 1,000,000. Chickpea particles should be sampled 

 

It is noted that the two varieties of chickpea are actually different colours and 

therefore within the 1,000,000 particles sampled, there will be ~ 9,900 identifiable 

Desi chickpeas. Rather than subject an unfortunate assistant to counting out the 106 

particles, thankfully an automated identification and counting instrument could be 

used or better still, the second part of the calculation (below) can be employed. 

 

Given that each particle is 5 mm dia. and 1.20 g / cm3 density, 

then using equation  8.17, the mass to take, W, would be: 

W = nρV 

Where ρ = density and V = volume (πd3/6) 

Substituting, we have 

W = [1,000,000. x 1.2 x 3.142 x (0.5)3 / 6] 

W = 78,600 g or 78.(6) kg. should be sampled to provide the level of precision on the 

concentration of the contaminant. 

 

 

Feedback on Problem 4 

In Chapter 8, equation 8.9 is our starting point. Here we see that for most cases: 

mL >>> mS and we know that our mL, (25 tonnes) when expressed in grams is 

2.5 x 107 ; hence 1 / mL in the equation is very, very small (4 x 10-8) 

So our equation to use is 8.10 

The description above provides all the information we require but one factor that we 

need to calculate first is the variance, s2 via the standard deviation (SD) ‘s’.. 

It states in the problem: “…a precision of ±0.05% as part of its assay to a confidence 

level (CL) of 95.4% (≡ ẍ± 2SD). The 0.05% is the absolute SD precision on the 

~3.3(3) % Zn concentration; i.e.; ẍ ± 0.05 %. Gy’s formula (equation 8.10) refers to 
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the relative variance, hence at the 95.4% CL (≡ ẍ± 2SD) stated, the variance 

becomes: 

2.0 x s = 0.050% / %Zn content of ore; = 0.05 / 3.3(3) = 0.015(0) 

sr = 0.015 / 2.0 = 0.0075(0); sr
2 = 0.000056(3) 

The values for K and for dn
3 will need to be calculated and here we keep all units as 

grams or cm or cm3. 

From above, dn = 0.5 cm, so for dn
3 = 0.125 cm3. 

K = f x g x c x l and so from above: f = 0.5; g = 0.25; 

 

Now c can be calculated by two approaches; 

where the approximation method i) uses: 

 

Sample density / Concentration of mineral as fraction 

 

The overall ‘sample density’ was shown above to be: 

 

fraction of sphalerite x density[Zn(Fe)S]  + fraction of quartz x density[Quartz]  

 

Now the Zn content is 3.3(3)% and sphalerite is expressed as Zn(Fe)S, so if the Fe 

content is very, very low then the mineral approaches ZnS: 

Zn = RMM of 65.38 and S = RMM of 32.06. By proportion, if the Zn content is 

3.3(3)% then this is equivalent to ~ 5.0 % (4.9(7)%) Zn(Fe)S as a maximum. The 

fraction of sphalerite is therefore 5/100 and the fraction of quartz is 95/100. Given 

that the densities are 4.1 and 2.65 g / cm3 for sphalerite and quartz respectively, the 

overall sample density is: 

 

[0.05 x 4.1] + [0.95 x 2.65] = 2.7(2) g / cm3. 

 

The concentration of the mineral sphalerite expressed as a fraction is 0.05, so that 

the approximation to factor ‘c’ becomes: 
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2.7(2) / 0.05 = ~ 54.(4) 

 

The other method, ii) is where c = [(1-a) / a][(1-a)ρm + aρg]; 

Here, a = fraction of required mineral in the ore (from above = 0.050) 

As calculated, if Zn = 3.3(3)%, then Zn(Fe)S = 4.9(7)% = ~5.0%; from 5/100 as 

fraction). 

ρm = density of required mineral Zn(Fe)S = 4.1 g / cm3 

ρg = density of the matrix material (Quartz, SiO2 = 2.65 g / cm3). 

Substituting the values into the equation, then c = 76.(5); which is considered a more 

accurate measure and will be used. 

 

The final factor is the Liberation factor ‘l’. This is expressed as: 

The grain size, dl for liberating the Zn(Fe)S mineral sphalerite (= 0.010 cm) divided 

by the nominal ore size, dn ( = 0.50 cm), all raised to the power of ‘b’, the liberation 

exponent, stated to be 0.5 in the question.  

Hence, the Liberation factor ‘l ‘ = [0.01 / 0.5]0.5 = 0.14(1); 

 

Solving for ms in equation 8.10 we have: 

 

ms = 0.5 x 0.25 x 76.(5) x 0.141 x (0.125) / s2
r 

  

If s2
r = 0.000056(3) then the mass, ms is: 

2994 g or 3.0 kg 

 

Considering the significant figures, then a 3.0 kg sample should allow sufficient 

particles of the ore to provide an assay of the Zn content to a precision of ±0.05% 

(0.015 relative for 1 SD; 0.0075 relative for 2SD etc.) at a confidence level of 95.4% 

 

---------------------------------------------------------------------------------- 
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Feedback on Problem 5 

Rearranging the relevant equation, we have ‘n’, the number of particles: 

 

n = [ρa ρb / ρ
2]2 (Pa - Pb / P)2 [p(1-p) / sr

2] 

 

From the information given, we know that 60 % of the mixed ore (15 tonnes; from 15 

/ 25) contains Zn at a concentration of 20 %; while 40 % of the total mixed ore (10 

tonnes; from 10 / 25) contains Zn at a concentration of 10 %. Therefore we can 

identify the following: 

Pa = 20 % 

Pb = 10 % 

p = fraction of sphalerite in ore A particles; = 60 % / 100 = 0.60 

1 – p = fraction of sphalerite in ore B particles; = 40 % / 100 = 0.40 

We can calculate ‘P’, the total quantity of Zn based on these: 

P = [0.6 x 20 % Zn + 0.4 x 10 %] = 12 + 4 = 16 % Zn in the total mixed ore 

Next, we can calculate the densities of the different component particles A and B. 

First we need to express the % Zn as % sphalerite [Zn (Fe)S] in the two components 

as the density is based upon the compounds present.. 

Using the molar masses, the % Zn x 97.4(4) / 65.3(8) in each case gives us: 

For A 

20 x 1.49 = 29.8(1) % sphalerite in component A 

And 

100 - 29.8(1) = 70.1(9) % quartz in component A 

If ρa = density of A particles,  

this makes our density for A = 0.298(1) x 4.10 + 0.701(9) x 2.65 g / cm3  

= 3.08 g / cm3 

And for B 

10 x 1.49 = 14.9(0) % sphalerite in component B 

And 

100 - 14.9(0) = 85.1(0) % quartz in component B 

If ρb = density of B particles,  

this makes our density for B = 0.149 x 4.10 + 0.851 x 2.65 g / cm3  
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= 2.86(6) g / cm3 

 

If ρ  = overall density of mixed ore then this will be given by: 

60 / 100 x 3.08 + 40 / 100 x 2.86; 

ρ  = 2.9(9) g / cm3  

 

The value of Sr is obtained from the information that we require a precision of ± 1 % 

relative standard deviation; Sr when given as a fraction is 1.0 / 100 = 0.010 

 

To calculate n, the number of particles, we now insert the relevant numbers into the 

rearranged equation; 

 

n = [3.08 x 2.87 / (2.99)2]2 (20 – 10 / 16)2 [0.6(1-0.6) / (0.010)2] 

n = [0.977] [0.390] [2400] 

n = 917 

 

Therefore in answer to part 1) at least 917 particles of ~1 cm mean particle diameter 

will need to be sample to ensure the level of precision required. 

 

This number may not seem very large and this is a result of the values for the 

various components associated with A and B having only a relatively small 

difference. The material is therefore not particularly heterogeneous and as we noted 

above, as the various values for the two components, A and B, approach one 

another, the less material overall has to be sampled for a given level of precision. 

ρa , ρb , and ρ  

Pa , Pb and P  

p and (1-p) 

It was noted in the question that the sample was also partly ground and sieved and 

well mixed (to reduce its heterogeneity). 
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For part 2) the relationship between number and mass is dependent upon the 

volume and the density. For a spherical particle this is given by equation 8.17 in 

chapter 8. 

 

Mass = n ρ V; where ρ from the above calculation is 2.99 g / cm3 and V = π d3 / 6 

with ‘d’ is given as 10 mm (= 1 cm) 

Therefore from 917 x 1 cm particles of density 2.99 g / cm3, we have: 

1440 g; if rounded up to cover various approximations then a 1.5 to 2 kg sample 

should be sufficient.  

 

For part 3) we note that the equation 

sr = s / P 

provides the relationship between the absolute standard deviation, s, and the relative 

standard deviation, sr , both given as a fraction for a mean value of ‘P’. The value of 

sr can also be considered as given with regard to a level of confidence (± 1 SD, ± 2 

SD, ± 3 SD etc.) on the value of ‘P’ (P ± zs, where ‘z’ refers to the number of 

standard deviations from the mean value of ‘P’). Hence, the relationship can be 

shown as: 

sr = zs / P  

In order to increase the confidence level on the value of ‘n’ and on the mass of 

material taken, to 95.4 % or ± 2 SD, the value of s / P now = sr / 2. The RSD of 1 % 

(factor of 0.01) asked for in the question now becomes 0.5 % or expressed as a 

factor, 0.005. In the full equation this changes the value of ‘n’ by 22 (as sr
2 is used in 

the full equation). Hence, the number of particles becomes 4 x 917 = 3,670 and the 

mass of sample becomes 5,760 g or ~ 5.8 kg. 

Feedback on Problem 6 

 

1) This is a particle number problem that can be converted into a mass using 

equations 8.16 and 8.19 from chapter 8. 

 

Here, p = 0.86 % / 100 = 0.0086 and sr = 1 % / 100; therefore: 
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n = (1-0.0086) / [0.0086 x (0.01)2] 

n = 1,152,800 particles of the calcite ore 

 

Now, the density of the ore ‘ρ’ = 2.71 g / cm3 and the mean particle diameter is 5 mm 

(0.5 cm); therefore: 

 

W = 1152800 x 2.71 x 3.142 x (0.5)3 / 6 g 

and 

W = 204,500 g; hence some 205 kg would cover the quantity required for a precision 

of 1% RSD on the mean dolomite value. 

 

2) If you only wish to bring back 5 kg to the laboratory then equation 8.19 can be 

re-arranged to show: 

 

d3 = 6W (p sr
2) / πρ(1-p) 

 

Given that all other values are known, then substituting we have: 

 d3 = 6 x 5000 [0.0086 x (0.01)2) / 3.142 x 2.71 x (0.9914) 

 d3 = 0.00306 

 d   = 0.145 cm (1.45 mm) 

This shows us that our 5 kg ore sample will contain the same number of particles as 

before (n = 1,152,800 particles of the calcite ore) when the mean particle diameter is 

reduced from 5 mm down to 1.45 mm, 

 

Feedback on Problem 7 

If we look to Section 8.3.2, the equations presented allow us to calculate the number of 

samples to take in order to allow us the confidence to state that a value is within certain 

limits. Considering equation 8.24, we can state that in this case, srel =  𝑋̅- µ ; =  0.005 (from 

0.5%) and sr = 10.2 / 510 = 0.02 (from 2.0% RSD shown by production line). Then: 
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(0.02)2 / (0.005)2 = 16. 

And using the equations from 8.24 we see that this value of 16 = (d.f. + 1) / t2 

We know from Chapter 7, that there is a relationship between number of samples n, the 

degrees of freedom (d.f, where d.f. = n – 1) and the t-test which provides us with a t factor 

value for a given confidence level (CL). We normally use the 95% CL. However we also 

know that as n changes, so does the t value. Therefore, we can use the graphical plot 

shown in Figure 8.1 of Chapter 8 to obtain a value for d.f directly* and hence n;  

From Figure 8.1 we can interpolate by placing the value of 16 on the y-axis, to provide us 

with the degrees of freedom (d.f.) on the x-axis . Noting that d.f = n – 1, where n = number of 

samples. 

The graph shows d.f. = 62 

As n-1 = d.f., 

then n = 63; 

Therefore we would need to take at least 63 samples, to provide us (at the 95% confidence 

level) with a relative standard deviation of 0.5 % on our mean value. In our on-line problem 

from Chapter 2 for this scenario, we estimated that 100 samples might be a good starting 

point. Given the production run’s statistical values, this actually allows us to calculate and 

therefore improve our estimate. 

 

* Other methods have an iterative approach, often requiring multiple steps before the value 

for n is obtained. 

 


