Microelectronic Circuits
8th Edition

A. Sedra, K.C. Smith
T. Chan Carusone, V. Gaudet

Spice Problems Solutions
Chapter 10

Prepared by: Nijwm Wary
2019
Problem: 10.22

1. The schematic for this problem is shown below.

![Schematic Image]

2. Note that external capacitances are added to match the transistor capacitances given in the problem. The parasitic capacitances from the device are CGS=12.5fF and CGD=1.8fF.

3. Run the netlist and perform AC analysis and plot DB(V(VO)/V(VSIG)).
4. The two frequencies are $f_1=38 \text{ MHz}$ and $f_2=40 \text{ GHz}$.

Netlist:

Copy the netlist given below and paste it into a text file and save it with *.cir extension.

```
**********Problem: P10_22**************
*******Main circuit begins here*************
IBIAS VG23 0 DC 100uAdc
RSIG VSIG VG1 20k TC=0,0
VS VSIG 0 AC 10m
+SIN 0.58 2m 1k 0 0 0
V1 VDD 0 1.8Vdc
M1 VO VG1 0 0 NMOS0P18
+ L=0.4u
  + W=5u
  + M=1
M2 VO VG23 VDD VDD PMOS0P18
+ L=0.4u
  + W=5u
  + M=1
M3 VG23 VG23 VDD VDD PMOS0P18
+ L=0.4u
  + W=5u
  + M=1
CGS 0 VG1 17.5f
CGD VO VG1 3.2f
*******Main circuit ends here**************
***************PMOS model begins here***************
.model PMOS0P18 PMOS(Level=1 VTO=-0.4 GAMMA=0.3 PHI=0.8
+ LD=0 WD=0 UO=118 LAMBDA=0.2 TOX=4.08E-9 PB=0.9 CJ=1E-3
+ CJSW=2.04E-10 MJ=0.45 MJSW=0.29 CGDO=3.43E-10 JS=4.0E-7 CGBO=3.5E-10
+ CGSO=3.43E-10)
***************PMOS model ends here***************
******************NMOS model begins here******************
.model NMOS0P18 NMOS(Level=1 VTO=0.4 GAMMA=0.3 PHI=0.84
+ LD=0 WD=0 UO=473 LAMBDA=0.2 TOX=4.08E-9 PB=0.9 CJ=1.6E-3
+ CJSW=2.04E-10 MJ=0.5 MJSW=0.11 CGDO=3.67E-10 JS=8.38E-6 CGBO=3.8E-10
+ CGSO=3.67E-10)
******************NMOS model ends here******************
********Analysis begins here*************
.OP
.AC DEC 20 1 1T
.PROBE
.END
********Analysis ends here*************
```

Sedra/Smith, Microelectronic Circuits, Eighth Edition, Spice solutions

© Oxford University Press, 2020
Problem: 10.57

1. The schematic for part (a) of this problem is shown below.

![Schematic Diagram]

2. For the transistor models used, $k' = 167 \mu A/V^2$. So, the W/L is 120 to get the specified g_m.

3. Run AC simulation and plot $DB(V(VD1)/V(VSIG))$. The gain is 40.55 V/V. The unity-gain frequency is at 19.27 MHz.
4. The schematic for part (b) of this problem is shown below.

5. Run an AC simulation and plot $DB(V(\text{VO})/V(\text{VSIG}))$.

![Graph](image-url)
6. The unity gain frequency is at 35.5 MHz. This is significantly lower than the gain-bandwidth product because the AC response is decreasing faster than -20 dB/decade between 10 and 100 MHz.

Netlist:

For part (a), copy the netlist given below and paste it into a text file and save it with *.cir extension.

```
*********Problem: P10_57 (a)**************
*******Main circuit begins here************
V1 VSIG 0 AC 10m
+ SIN 0.79 10m 1k 0 0 0
RL VD1 VDD 20k TC=0,0
R2 VD1 VSIG 20k TC=0,0
V2 VDD 0 5Vdc
M1 VD1 VG1 0 0 NMOS0P5
+ L=0.5u
+ W=60u
+ M=1
CGS 0 VG1 2p TC=0,0
CGD VD1 VG1 0.3p TC=0,0
CL 0 VD1 1p TC=0,0
*******Main circuit ends here************

********* NMOS model begins here ***************
.model NMOS0P5 NMOS(Level=1 VTO=0.7 GAMMA=0.5 PHI=0.8
+ LD=0 WD=0 UO=460 LAMBDA=0.33 TOX=9.5E-9 PB=0.9 CJ=0.57E-3
+ CJSW=120E-12 MJ=0.5 MJSW=0.4 CGDO=0.4E-9 JS=10E-9 CGBO=0.38E-9
+ CGSO=0.4E-9)
********* NMOS model ends here ***************

******** Analysis begins here ***************
.OP
.AC DEC 20 1 100MEG
.PROBE
.END
******** Analysis ends here ***************
```

For part (b), copy the netlist given below and paste it into a text file and save it with *.cir extension.

```
*********Problem: P10_57 (b)**************
*******Main circuit begins here************
V2 VDD 0 6.5Vdc
RL VO VDD 20k TC=0,0
M2 VO VG2 VD1 0 NMOS0P5
+ L=0.5u
+ W=60u
+ M=1
V3 VG2 0 2.8Vdc
V1 VSIG 0 AC 10m
+ SIN 0.79 10m 1k 0 0 0
R2 VD1 VSIG 20k TC=0,0
CGS 0 VG1 2p TC=0,0
CGD VD1 VG1 0.3p TC=0,0
M1 VD1 VG1 0 0 NMOS0P5
+ L=0.5u
+ W=60u
+ M=1
CL 0 VO 1p TC=0,0
*******Main circuit ends here************
```
*************** NMOS model begins here ****************************
.model NMOSOP5 NMOS(Level=1 VTO=0.7 GAMMA=0.5 PHI=0.8
+ LD=0 WD=0 UO=460 LAMBDA=0.33 TOX=9.5E-9 PB=0.9 CJ=0.57E-3
+ CJSW=120E-12 MJ=0.5 MJSW=0.4 CGDO=0.4E-9 JS=10E-9 CGBO=0.38E-9
+ CGSO=0.4E-9)
*************** NMOS model ends here ****************************

******** Analysis begins here************
.OP
.AC DEC 20 1 100MEG
.PROBE
.END

******** Analysis ends here************