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Appendix E

Advanced Statistical 
Procedures
CHAPTER OBJECTIVES

 1. Explain the Law of Parismony.

 2. Summarize a series of different statistical analysis of variance (ANOVA) tests: factorial ANOVA,  
analysis of covariance (ANCOVA), multivariate ANOVA (MANOVA), and repeated-measures ANOVA.

 3. Evaluate a range of advanced statistical tests that analyze relationships: path analysis, structural  
equation models, factor analysis, and canonical correlations.

In Chapters 15 through 19, we explained in great detail five common statistical procedures that communication research-
ers use when doing social scientific empirical research. However, many research articles use a wide range of additional 
statistical tests that you should at least be aware of at this point, so this appendix introduces you to four difference tests 
and four relationship tests that are currently found in communication journals.

Most of these tests are useful because they allow researchers to be parsimonious. The Law of Parsimony states that sci-
entists should look for the simplest assumption in the formulation of a theory and the simplest test to interpret data.  Although we 
are not as concerned with the first part of this definition (theory), we are interested in the second part  because of its depic-
tion of how researchers should carry out data analysis. As mentioned, the law of parsimony states that researchers should 
find the simplest way to analyze their data. And we have already conducted one statistical test in this book because of the 
law of parsimony, but we did not tell you so at the time. When someone conducts a one-way analysis of variance (ANOVA) 
that has an independent variable with three categories (A, B, and C), he or she could easily run a single one-way ANOVA 
or three independent t tests (A and B, B and C, and A and C). However, when we run three independent t tests, our error is 
compounded for each test, so the likelihood of type I error rises. Conducting a single one-way ANOVA is more frugal than 
running three t tests, so a one-way ANOVA is more parsimonious in this case. In fact, all of the advanced statistics could 
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be determined using the tests previously described in this text, but the tests described 
in this appendix are more parsimonious. Additionally, these advanced tests generally 
perform computations that the less parsimonious tests would not be able to compute, so 
we are able to ask more advanced questions about our data using a single test.

This appendix is not going to provide you with computer printouts or make you com-
pute things by hand. To learn more about how to run these tests in Statistical Package 
for the Social Sciences (SPSS), we encourage you to read Mertler and Vannatta (2005), 
and to see how many of these tests are calculated by hand, please read Bruning and 
Kintz (1997). 

DIFFERENCE TESTS

In this section, we examine four difference tests: factorial ANOVA, analysis of covariance 
(ANCOVA), multivariate ANOVA (MANOVA), and repeated-measures ANOVA.

Factorial Anova
EXAMPLE
Suppose that you wanted to find out whether there were differences between males and 
females and differences between political affiliations (Democrat, Republican, other, 
and not registered to vote) on college students’ attitudes toward college. We could run 
two one-way ANOVAs to answer this question using both sex and political affiliations 
as separate independent variables (remember that in a one-way ANOVA the indepen-
dent variable is always a nominal variable) looking for differences in the dependent 
variable (college students’ attitudes toward college). (This example is based on the data-
set found on the textbook’s website at https://oup-arc.com/wrench.)

Unfortunately, one thing we know about statistics is that the more statistical tests a 
researcher runs to answer a question, the greater the chance that he or she will run into 
type I error. Running the two one-way ANOVAs is not considered parsimonious for 
this specific example. In statistics, we want the most frugal and simple (parsimonious) 
way to answer a single research question. For example, why run three linear regres-
sions when one multiple linear regression will do the same thing? The same thing is true 
in this example as well. There is no need to run two separate one-way ANOVAs (“sex 
with attitude toward college” and “political affiliation with attitude toward college”). 
Instead, we run what is called a two-way or factorial ANOVA.

EXPLANATION
When we originally talked about one-way ANOVAs, we mentioned that the inde-
pendent variable is called a factor, so in a factorial ANOVA, you are simply dealing 
with more than one factor. In the example here, we have two levels in the first factor 
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(male and female) and four levels in the second factor (Democrat, Republican, other, and 
not registered to vote). This design then would be considered a 2 × 4 factorial ANOVA.

In a factorial ANOVA, there are two types of difference tests. The first type of 
 difference test is called main effects because they look for differences between each 
of the nominal independent variable’s categories separately. In our example, the first 
difference computed in the factorial ANOVA looks at the first independent variable 
(female vs. male) and the dependent variable (attitude toward college). The second 
 difference computed in the factorial ANOVA looks for differences among the  categories 
in the second independent variable (Democrat, Republican, other, and not registered 
to vote) and the dependent variable (attitude toward college).

The third difference test examined in a two-way ANOVA is called an interaction 
effect because it is looking for differences in the combination of the two factors. In the 
example here, the interaction test looks for differences between all the following eight 
groups (2 × 4 = 8): male Democrat, male Republican, male other, male not registered 
to vote, female Democrat, female Republican, female other, and female not registered 
to vote. So not only is a factorial ANOVA more parsimonious, but also it gives you a 
second type of difference test that cannot be done by simple one-way ANOVAs. You 
could even throw another factor into this study if you so desired, such as geographical 
location (north, south, east, or west), and get a 2 × 4 × 4 design. In this case, you would 
end up with 32 comparisons being examined by the single interaction test and three 
main effect tests being reported by the factorial ANOVA test.

APA WRITE-UP
Now that we have explained what a factorial ANOVA is, let’s see how the American Psy-
chological Association (APA) write-up of a factorial ANOVA would appear in a journal:

A 2 × 4 ANOVA was conducted to evaluate the effects of biological sex (male 

and female) and political affiliation (Democrat, Republican, other, and not reg-

istered to vote) on college students’ attitudes toward college. The means and 

standard deviations can be seen in Figure E.1. The ANOVA indicated a signifi-

cant main effect for sex with attitude toward college: F(1, 304) = 4.45, p = 0.04; 

did not indicate a significant main effect for political affiliation with attitude 

toward college: F(3, 304) = 0.201, p = 0.90; and did not indicate an interaction 

effect for sex by political affiliation with attitude toward college: F(3, 304) = 

0.144, p = 0.94. The biological sex main effect indicated that females have more 

positive attitudes toward college than males.

DISCUSSION
In this APA write-up, we see three separate F tests reported in the one factorial 
ANOVA conducted to analyze this research question: two main effects tests and one 
interaction test. One of the main effect tests was significant, indicating that females 
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reported having more positive attitudes toward college than males do. The other main 
effect test indicated that people in the four political affiliations (Democrat, Repub-
lic, other, and not registered to vote) did not differ in their attitudes toward college. 
Finally, we found that there were no statistical differences between the eight com-
bined groups (male Democrat, male Republican, male other, male not registered to 
vote, female Democrat, female Republican, female other, and female not registered 
to vote) and their attitudes toward college. Female Republicans did not differ from 
males not registered to vote and so on. Overall, the factorial ANOVA allows research-
ers to answer more complex questions than could be accomplished using a simple 
one-way ANOVA.

Analysis of Covariance
EXAMPLE
Suppose you want to determine whether males and females differ in their level of 
communication apprehension (CA). You have a group of college students fill out the 
Personal Report of Communication Apprehension–24 (PRCA-24). However, you 
 understand that there is a strong negative relationship between an individual’s CA and 
her or his willingness to communicate (WTC). You want to see whether WTC is a con-
founding variable when determining whether females and males have different levels of 
CA. (This example is based on the dataset found on the textbook’s website.)

EXPLANATION
The analysis of covariance (ANCOVA) extends the one-way ANOVA discussed 
in Chapter 17. Simply put, a covariate is a variable related to the dependent vari-
able that can cause the participants’ scores on the dependent variable to be skewed 
or  altered, so the ANCOVA readjusts the dependent variable scores to prevent this 
skewing from occurring. More specifically, a researcher may opt to use an ANCOVA 
for two reasons.

Biological Sex Political Affiliation Mean SD

Male Democrat 35.86 6.19
Republican 35.17 6.51
Other 36.37 6.10
Not Registered to Vote 34.46 6.02
Total 35.52 6.29

Female Democrat 37.78 5.19
Republican 37.57 5.89
Other 37.45 5.07
Not Registered to Vote 37.50 7.48
Total 37.65 5.54

FIGURE E.1
Factorial ANOVA 
Means and SDs
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First, the researcher may want to exclude the effect of a given independent variable. 
For example, maybe you are conducting a study looking at sex differences and percep-
tions of political speeches. However, when you collect your data, you find a significant 
difference between the ages of the females and males in your sample. To prevent age 
from becoming a factor while you are looking at the sex differences, you decide to use 
age as a covariate to exclude the effect that it may have on your participants’ perceptions 
of the political speeches.

The second reason that a researcher may opt to use an ANCOVA is when two vari-
ables are strongly related to each other. In this situation, if someone is looking for a 
difference in a dependent variable, it is possible that the researcher will end up  finding a 
difference in the variance accounted for by the dependent variable and another variable 
(the covariate). For this reason, the researcher may want to partial out the  variance 
of the covariate so that he or she can only look for a difference in the variance not 
 accounted for by the covariate.

In our sample ANCOVA, we will test the second use of an ANCOVA. The purpose 
of our example ANCOVA is to allow a researcher to determine whether a difference lies 
between groups (female and male) on a dependent variable (CA) after the dependent 
variable has been mathematically adjusted for differences associated with one or more 
covariates (WTC). The basic test analyzed in an ANCOVA is similar to the one-way 
ANOVA in that both look for differences between groups. The ANCOVA, however, in-
creases the power of the F test for a main effect or interaction by removing the predict-
able variance associated with the covariate (WTC) from the error term for the F test.

APA WRITE-UP
Let’s see how the APA write-up of an ANCOVA would appear in a journal:

The purpose of this research question was to examine the possibility of a 

 significant difference in CA based on biological sex (male and female) while 

 controlling for an individual’s WTC. A one-way ANCOVA was conducted 

using biological sex (male and female) as the independent variable, CA as 

the  dependent  variable, and WTC as the covariate. A significant relationship 

was found  between the dependent variable (CA) and the covariate (WTC):  

F(1, 295) = 86.41, p < 0.001, η2 = 0.23. Furthermore, a significant difference was 

found between males (M = 62.68, SD = 15.43) and females (M = 66.41, SD = 19.25)  

on CA: F(1, 295) = 8.78, p = 0.003, η2 = 0.03.

DISCUSSION
These results indicate a significant difference between males and females and their 
levels of CA. In Chapter 16, we ran the same test using an independent samples t test 
procedure and found no differences between males and females and CA. Because we 
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used the same data off the textbook’s website sample to ask this question, what caused 
the difference to appear now?

The correction of CA that occurred by the covariate WTC is what ultimately caused 
this difference to occur. Note that two separate F tests are reported in the ANCOVA. 
The first F test indicated that there was a significant relationship between the dependent 
variable (CA) and the covariate (WTC). The eta-square (η2 = 0.23) indicates that ap-
proximately 23% of the variance in CA can be accounted for by WTC. In an ANCOVA, 
you can think of eta-square as being similar to R2 in a regression.

The second F test examined the differences between males and females on CA. This 
test indicated that females do have slightly higher levels of CA than males in the sample. 
Note again that eta-square is reported for this F test. Although males and females differ 
in their CA in this sample, biological sex only accounts for 2.9% of the variance, which 
is not much when you think about it.

MULTIVARIATE ANOVA
Example
A multivariate ANOVA (MANOVA) allows a researcher to examine differences using 
one or more nominal independent variables with one or more dependent variables. 
Perhaps a researcher wants to see whether males and females differ in their levels of 
ethnocentrism, but also wants to see whether males and females differ in their levels 
of WTC with strangers. This could be answered using two one-way ANOVAs (sex with 
ethnocentrism and sex with WTC with strangers), but again, the more tests you use, the 
greater the chance you will end up with type I error. So, to be parsimonious (simple and 
frugal), you would need to conduct a one-way MANOVA.

EXPLANATION
A MANOVA, as discussed earlier, is considered a multivariate test because you have 
multiple dependent variables (ethnocentrism and WTC with strangers), while a one-
way ANOVA is considered a univariate test because you have one dependent variable. 
Often, the dependent variables analyzed in a MANOVA are different measures of the 
same phenomenon. In our example, we would think that people who have higher levels 
of ethnocentrism would be less willing to communicate with strangers, so these two 
variables could theoretically be related. The two do not need to be related, but they 
should share a common conceptual meaning and some degree of linearity (remem-
ber that all ANOVA tests are general linear model tests). In essence, the dependent 
variables in a MANOVA should go together in a way that makes sense, so you would 
not metaphorically put both apples and oranges as dependent variables in the same 
MANOVA. (Again, the purpose of this chapter is not to explain all of the mathematical 
aspects of the MANOVA procedure, but to introduce you to the basic concept. For this 
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reason, we strongly urge you to read more information about the MANOVA elsewhere 
since it is the basis of a number of advanced statistical procedures.)

APA WRITE-UP
Let’s see how the APA write-up of a MANOVA would appear in a journal:

The goal of this research question was to determine whether there was a differ-

ence between males and females on ethnocentrism and WTC with strangers. 

To analyze this question, a one-way MANOVA was calculated using biologi-

cal sex (female and male) as the independent variable and the participant’s 

scores for ethnocentrism and WTC with strangers as the dependent vari-

ables. Box’s test (Box’s M = 3.58) reveals that equal variances can be assumed:  

F(3, 31993081) = 1.19, p > 0.05; so Wilks’s lambda (Λ) will be used as the test 

statistic. The Wilks’s lambda criteria indicate significant group differences in 

 biological sex for the overall model: Wilks’s Λ = 0.975, F(2, 302) = 3.94, p = 0.02, 

 multivariate η2 = 0.03. Univariate ANOVA results were interpreted using alpha 

at 0.05.  Results reveal that males (M = 38.43, SD = 9.08) and females (M = 35.63, 

SD = 8.08) significantly differed on ethnocentrism: F(1, 303) = 7.91, p = 0.005, 

partial η2 = 0.03. Results also revealed that males (M = 47.86, SD = 24.86) and 

 females (M = 48.86, SD = 26.67) did not significantly differ on WTC with strang-

ers: F(1, 303) = 0.11, p = 0.74.

DISCUSSION
Let’s start an analysis of these results by remembering the purpose of this research 
question. The goal was to use one independent variable (sex) to examine two depen-
dent variables (ethnocentrism and WTC with strangers) using one test. The first 
result reported in the MANOVA is the test that measures for the equality of vari-
ances assumption. Like in other tests we have examined, the MANOVA has a basic 
assumption that the variances from the groups being examined are equal. Box’s M 
test examines the equality of variances assumption and determines whether we can 
use Wilks’s lambda (if Box’s M is not significant—we accept the equality of variances 
assumption) or Pillai’s trace (if Box’s M is significant—we reject the equality of vari-
ances assumption). Wilks’s lambda or Pillai’s trace are two multivariate tests that 
 examine statistical significance of the whole model (both independent variables and 
dependent variables) In this example, Box’s M was not significant, so we were able to 
utilize Wilks’s lambda.

The multivariate test is then followed by a series of univariate tests (F tests) for 
the independent variable (sex) with every dependent variable (ethnocentrism and 
WTC with strangers). The multivariate test essentially lets us know that a difference 
exists  between the independent variable and dependent variables, but not where the 
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difference actually is. In our example, the overall multivariate test was significant, so 
we needed to examine the univariate statistics (sex with ethnocentrism and sex with 
WTC with strangers). Here, males had higher levels of ethnocentrism than females, 
but there was no difference between females and males in their WTC with strangers. 
However, once again, biological sex only accounted for a small amount of the variance 
in ethnocentrism (3%).

Repeated-Measures Anova
EXAMPLE
Suppose you want to determine whether taking a public speaking course actually 
decreases a person’s level of CA. One possible way to determine whether a person’s 
level of CA decreases over the course of a public speaking class would be to test his or 
her CA level at the beginning of the course, test it again halfway through the course, 
and test it a third time at the end of the course. You could then calculate three paired 
t tests to determine this research question (Time 1 to Time 2, Time 2 to Time 3, and 
Time 1 to  Time 3), but again, the more tests you run, the more error your findings 
will have. So, to avoid increasing your type I error, you can run a procedure called a 
repeated- measures ANOVA. (This example is hypothetical because the data on the 
textbook’s website are not set up to answer a repeated-measures ANOVA question.)

EXPLANATION
A repeated-measures ANOVA allows a researcher to determine whether differences 
occur in a variable over time. In this example, we would measure these differences 
 occurring over time by having students fill out the PRCA-24 at the beginning of the 
semester/quarter, in the middle of the semester/quarter, and at the end of the  semester/ 
quarter. By having the students fill out the survey all three times, we have a way of 
 mapping what happens to CA levels throughout the course of a public speaking class. 
What we are testing is the null hypothesis that Time 1 = Time 2 = Time 3.

APA WRITE-UP
Let’s see how the APA write-up of a repeated-measures ANOVA would appear in a 
journal:

The goal of this research question was to determine whether a person’s 

level of CA changes over the course of a public speaking class. A one-way, 

 within-subjects, repeated-measures ANOVA was conducted using three scores 

for CA taken at the beginning of the course (M = 65.11, SD = 15.49), the middle 

of the course (M = 64.61, SD = 14.36), and the end of the course (M = 64.09, 

SD = 15.93). This study found no significant differences between the measure-

ments: Wilks’s Λ = 0.985, F(2, 125) = 0.96, p = 0.39.
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DISCUSSION
In this APA write-up, we learned that there was not a significant difference among the 
beginning, middle, and end of the public speaking course and individual levels of CA. 
Although the repeated-measures ANOVA is considered a univariate test, it still relies on 
a multivariate test (Wilks’s Λ) to determine the overall significance of the model. If the 
test had been significant, then we could have used paired t tests to determine where the 
actual difference existed (Time 1 to Time 2, Time 1 to Time 3, or Time 2 to Time 3).

It is also easy to make the repeated-measures ANOVA even more complicated by 
adding what is called a between-groups aspect to the test. For example, perhaps you 
want to see whether male and female levels of CA changed over the course of a public 
speaking course, which would give you one group within (everyone and CA) and 
one group between (males and females). More and more layers can be added to the 
 repeated-measures ANOVA by adding multiple dependent variables, which would 
create a repeated-measures MANOVA.

RELATIONSHIP TESTS

In this section, we will examine four relationship tests: path analysis, structural equa-
tion modeling, factor analysis, and canonical correlations.

Path Analysis
EXAMPLE
Causal relationships are one area that social scientific researchers are hesitant to dis-
cuss. However, one technique that has been developed to examine causal relationships 
is the path analysis.

Perhaps you wanted to determine the causal relationships among CA, ethnocen-
trism, humor assessment (HA), attitudes toward college, and people’s belief that every-
one should be required to take public speaking in college. You start doodling on a piece 
of paper and come up with a theoretical explanation for why some people like college 
and others do not and why some people think everyone should take public speaking 
and others do not (Figure E.2). You believe that people with higher levels of CA are less 
likely to like college and are less likely to believe that everyone in college should take 
public speaking (represented by the minus sign next to the lines in the figure). Further-
more, you believe that people who are more humorous will enjoy college more and will 
believe that everyone in college should take public speaking (represented by the plus 
sign next to the lines). Finally, you believe that people who are ethnocentric are going 
to have more negative attitudes about college, but you do not think that there will be 
a relationship between an individual’s level of ethnocentrism and her or his belief that 
everyone should take a public speaking class in college.
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EXPLANATION
In a path analysis, two different types of variables must be examined: endogenous and 
exogenous. Endogenous variables are explained by one or more of the other variables 
in the model (e.g., belief about public speaking and attitude about college). Exogenous 
variables are taken as a given, so the model does not try to explain them (e.g., CA, 
ethnocentrism, and HA). To conduct a path analysis, we calculate a series of multiple 
linear regressions using the exogenous variables as the independent variables (CA, eth-
nocentrism, and HA) and the endogenous variables as the dependent variables (belief 
about public speaking and attitude about college). From these regressions, you simply 
report the beta weights for each regression on the picture.

APA WRITE-UP
Let’s see how the APA write-up of a path analysis would appear in a journal:

A path analysis was conducted to determine the causal effects among the vari-

ables CA, ethnocentrism, HA, belief that everyone should take public speaking 

in college, and attitude about college. Before the analysis, an initial model was 

created (Figure E.2). This model was not consistent with the empirical data. 

Two of the correlations exceeded a difference of 0.05, so the nonsignificant 

paths were removed from the model. Thus, a revised model was generated 

(Figure E.3). Approximately 12% of the variance in a person’s belief that taking 

public speaking in college should be required can be accounted for by the 

model, and approximately 17% of the variance in a person’s attitude about col-

lege can be accounted for by the model.

Humor 
Assessment

Ethnocentrism

Attitude About
College

Belief About
Public Speaking

Communication 
Apprehension

FIGURE E.2
Path Analysis Example
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DISCUSSION
Overall, you can think of the path analysis as a pictorial way of presenting information 
about multiple regressions. The numbers shown to the left of the exogenous variables 
in Figure E.3 are Pearson product-moment correlations that were calculated among 
the exogenous variables. The numbers above the lines originating from an exogenous 
variable pointing toward an endogenous variable are beta weights  calculated during 
multiple regressions and indicate whether there is a positive or  negative  relationship. 
What we can tell from these findings is that an individual’s level of CA negatively 
relates to her or his belief that all college students should take public  speaking. We 
also learned that there is a positive relationship between an individual’s HA and 
positive attitudes about college and that there is a negative relationship  between 
an individual’s ethnocentrism and positive attitudes about college. People who are 
more  humorous feel more positively about college, whereas people who are more 
 ethnocentric feel less positively about college.

Structural Equation Modeling
EXAMPLE
As we have noted throughout this appendix and in previous chapters, the dataset col-
lected for this textbook has indicated that there is a negative relationship between an 
individual’s level of CA and her or his belief that all college students should be required 
to take public speaking. Suppose that you wanted to examine this relationship in light 
of the four subscales that allegedly make up CA. We could run a path analysis as in 
the previous section, but a path analysis relies on a number of linear and multivariate 
regressions, which simply is not parsimonious. However, a newer statistical technique 
has been created called structural equation modeling.
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Betas were signi�cant at p < .005.
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Path Analysis 
Calculated
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In this example, we want to see how well the four subscales of CA create this vari-
able known as “communication apprehension” and how this variable relates to a par-
ticipant’s belief that all students in college should be required to take public speaking. 
And to do this, we will use structural equation modeling. Figure E.4 shows how this 
question would look pictorially.

EXPLANATION
To further understand this research question, we will examine what a structural equa-
tion actually is. Structural equation modeling is similar in purpose to path analy-
sis; however, the calculations are considerably more difficult but mathematically more 
meaningful.

Ultimately, structural equation modeling is concerned with observed and latent 
variables. An observed variable can be an observation that a researcher directly collects 
(self-reports on a survey, scores on an achievement test, coded responses to interview 
questions, etc.). Latent variables are those that are not directly measured, but that we 
believe our measurements help us understand. For example, we believe that CA is a 
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0,

e2

1

Inter CA

0,

e3

1

Public CA
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e4

1

Everyone should be required
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0,

e5
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Communication 
Apprehension

FIGURE E.4
Structural Equation 
Model Hypothesis
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product of four subscales (group CA, meeting CA, interpersonal CA, and public CA). 
Therefore, we do not measure a variable called “communication apprehension,” but 
rather measure the four subscales together and then combine their results to create an 
overall score of communication apprehension. In essence, “communication apprehen-
sion” is the latent variable being measured by the four subscales (group CA, meeting 
CA, interpersonal CA, and public CA). As shown in Figure E.5, we measured each of 
the four subscales in a rectangular box, indicating that these variables are directly mea-
sured by the researcher. However, the variable listed as “Communication Apprehen-
sion” is an oval, indicating that it is a latent variable.

In structural equation modeling, as in path analysis, there are two types of variables 
discussed: exogenous and endogenous. Exogenous latent variables are similar to inde-
pendent variables because they can account for some of the variance in other variables 
in the model. Endogenous latent variables are similar to dependent variables because 
they are influenced by the exogenous variables. Here, CA is an example of an exogenous 
variable because it attempts to account for some variance in an individual’s belief that 
all college students should be required to take public speaking.

Communication 
Apprehension

Group CA

e1

.84

Meet CA

e2

.91

Inter CA

e3

.79

Public CA

e4

.64

-.32

e5

Everyone should be required
to take public speaking in college

FIGURE E.5
Calculated Structural 
Equation Model
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APA WRITE-UP
Let’s see how the APA write-up of our structural equation modeling would appear in a 
journal:

Using structural equation modeling, the relationships between CA, a latent vari-

able with four indicators (group CA, meeting CA, interpersonal CA, and public 

CA), and an individual’s belief that public speaking be a required course in college 

were examined. The hypothesized model is presented in Figure E.4.  Circles rep-

resent latent variables, and rectangles represent measured variables. Absence 

of a line connecting variables implies lack of a hypothesized relationship. Results 

indicated that the proposed structural model was problematic: χ2(5, N = 325) 

= 24.20, p < 0.001. However, because this model had more than 200 partic-

ipants, other goodness-of-fit indices are necessary. All of the  goodness-of-fit 

indices far exceeded the recommended levels: normed fit index (NFI) = 0.99, 

comparative fit index (CFI) = 0.99, relative fit index (RFI) = 0.98, incremental index 

of fit (IFI) = 0.99, and the Tucker–Lewis index (TLI) = 0.99. All of the indices of fit 

were over the 0.95 mark, which indicates that the model proposed is a superior 

fit. The final structural equation model can be seen in Figure E.5.

DISCUSSION
The goal of this research question was to see whether the four subscales of the PRCA-24 
actually created a latent exogenous variable called “communication apprehension” and 
then to determine whether this latent exogenous variable was related to an individual’s 
belief that everyone in college should be required to take public speaking. To examine 
these findings, we first talk about the statistics involved and then examine the struc-
tural equation model in Figure E.5.

The first statistic that is reported is a chi-square test to determine whether the model 
is a good fit. When examining the chi-square test that is conducted for a structural 
equation model, two things should really be examined: the chi-square statistic and the 
degrees of freedom (df). In an ideal test, the df is less than 5, and the closer the df is to 
the chi-square statistic, the stronger your model is said to be. However, the chi-square 
test of goodness-of-fit in the structural equation model is not always the best way to 
determine whether you have a strong model, especially if a study has more than 200 
participants (Bollen & Long, 1993). If your study has more than 200 participants, your 
chi-square is almost always going to be significant, which is an indication of poor fit. 
For this reason, a number of other indices have been developed such as the ones re-
ported in our APA write-up for this example: normed fit index (NFI), comparative fit 
index (CFI), relative fit index (RFI), incremental index of fit (IFI), and the Tucker–
Lewis index (TLI). Without going into the mathematical reasoning for each of these 
goodness-of-fit tests, each explains to us mathematically whether our model makes 
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sense the way we designed it. All of these goodness-of-fit indices can range from 0 to 1,  
with scores above 0.95 generally being seen as acceptable (Byrne, 2010). Overall, all the 
goodness-of-fit indices indicate that the model we proposed in Figure E.5 was a good 
model to explain the data.

Next to the goodness-of-fit indices, the most important part of the structural equa-
tion model is the standardized estimates seen in Figure E.5. The standardized esti-
mates can be seen as beta weights when determining the linearity of the relationship. 
In essence, all four subscales contribute to create the latent variable “communication 
apprehension” above 0.64, which indicates that the four subscales do actually measure 
the latent variable effectively. There is also a negative relationship between the latent 
exogenous variable “communication apprehension” and an individual’s belief that all 
students should be required to take public speaking in college. Although this resembles 
the path analysis results from the previous section, the biggest difference here is that the 
structural equation model is more parsimonious and accounts for possible error, which 
a series of multiple linear regressions cannot. Attached to every observed variable (the 
rectangles in the model), you will note that there is an error term (a small circle with 
the letter “e” followed by a number from 1 to 5). Again, to avoid going into the computa-
tional mathematics, understand that the error associated with observed variables (four 
CA subscales and belief about public speaking) accounts for measurement error, which 
can come from one of two places: random error and error uniqueness. Random error 
is simply random measurement error that occurs as a result of measuring things. Error 
uniqueness indicates that there was a form of error unique to a particular variable that 
is considered to be a nonrandom measurement error.

Factor Analysis
EXAMPLE
Factor analysis is an extremely important technique to master if you want to understand 
how to create survey research measures like the PRCA-24, WTC, Sociocommunicative 
Orientation Scale, or any of the other scales we have used in this textbook. One of the 
problems when creating a new scale is that you never know whether or not your new 
scale is actually measuring what you say it should be measuring. Although the primary 
way we examine problems like this is through analyzing face or criterion validity (see 
Chapter 8), another way we can attempt to understand whether a scale is measuring 
what we say it is measuring is through a factor analysis (construct or factorial validity).

In 2001, Richmond, Wrench, and Gorham created a new research scale to measure 
an individual’s use of humor during interpersonal interactions. The scale itself consists 
of 16 Likert-type items using a five-point scoring system from 1 (strongly disagree) to 
5 (strongly agree). How do we know that these 16 items actually measure anything? As 
discussed in Chapter 8, the HA instrument has an alpha reliability of 0.91 (M = 63.24, 



E-16

wre61063_appE_E1-E25.indd E-16 09/25/18  12:37 PM

Appendix e AdvAnced StAtiSticAl ProcedureS

SD = 9.53). So we know the scale is reliable, but do the 16 items in the HA actually 
measure just one thing? To determine whether a set of scale items (like the 16 items on 
the HA) is measuring one concept or multiple concepts, we conduct a factor analysis.

EXPLANATION
A factor analysis is a technique that enables researchers to determine variation and 
covariation among research measures. For example, suppose we had two items being 
measured on a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The 
first item in the scale reads “People are innately good,” and the second item reads “Cats 
are the best animals.” You give these two questions to a large sample and get the results 
back. Assume that you get an alpha reliability of 0.80, which is considered good. So 
your scale is reliable, but what is the scale really measuring?

Chances are your scale is not measuring one coherent concept, but rather two con-
cepts that happen to be related to each other. The purpose of a factor analysis is to de-
termine how many different concepts are being measured by a set of questions on a 
research scale. If you recall the discussion from Chapter 9 on creating surveys, we men-
tioned that a single research survey can only measure one thing. In the instance of the 
HA, the purpose of the scale is to examine only an individual’s use of humor during 
interpersonal interactions. The scale does not measure an individual’s ability to use 
humor, an individual’s sense of humor, or anything else. The scale has a single purpose, 
and all 16 scale items were written to reflect that conceptualization.

Two basic types of factor analyses can be calculated. The first is called an exploratory 
factor analysis. An exploratory factor analysis is when a researcher has a set of scale items 
and wants to determine how many concepts the set of scale items is measuring. If you 
have 20 scale items, it is theoretically possible that each scale item is measuring a com-
pletely different concept and that there is no unity between the items. However, it is also 
possible that all 20 items are only measuring a single variable. Most communication 
scales tend to measure between one and five distinct concepts. For example, of the scales 
used in this textbook, only one scale measures two distinct variables. Know which scale 
it is? If you guessed the Sociocommunicative Orientation Scale, then you were correct. 
The Sociocommunicative Orientation Scale measures the degree to which an individual 
is assertive and the degree to which an individual is responsive.

Each concept measured by a scale is called a factor. A factor analysis helps research-
ers group the individual scale items into coherent sets of concepts called factors. Some-
times you may think you have written 30 strong scale items to measure one single 
concept—say, cooperative communication—only to find out that your 30 items are 
actually measuring three different concepts—cooperative behavior, competitive be-
havior, and trust. Other times, the 30 items will hold strong and clearly measure one 
variable—cooperative communication.
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The second type of factor analysis is called confirmatory factor analysis (CFA). This 
analysis is when a researcher uses a factor analysis to make sure that a previously deter-
mined factor structure is consistent with present results. For example, in the last exam-
ple looking at structural equation modeling, we used structural equation modeling to 
determine whether the four CA subscales actually measure a variable called “communi-
cation apprehension.” Although not an exact example of CFA, this was similar to what 
a CFA actually does, except that in a true CFA, we would have also tested whether each 
of the individual scale items clearly helps in creating the individual subscales (meeting 
CA, group CA, interpersonal CA, and public CA).

Another area of factor analysis that we must explain is what we refer to as extraction 
methods and rotation. Extraction refers to the specific type of factor analysis that an 
individual is conducting. The most basic factor analysis extraction method is called a 
principal component factor analysis. Although we will not discuss the mathematical 
details of a principal component analysis, you should know that there are other forms of 
factor analysis, each of which is best used in different circumstances (unweighted least 
squares, generalized least squares, maximum likelihood, principal axis factor, etc.), and 
that each factoring method contains differing mathematical reasoning and computa-
tions. For a good explanation of the different types of extraction methods and when to 
use one rather than another, we strongly encourage you to read Tabachnick and Fidell 
(2001) or Grimm and Yarnold (2000a, 2000b).

Still another important concept in the world of factor analysis is factor rotation. 
When researchers calculate factor analyses, it is often difficult to ascertain a clear factor 
structure for the scale items involved. Trying to find factor structures is akin to looking 
at Impressionist art. Sometimes you have to step back from the piece to see what is actu-
ally on the canvas, or maybe you have to turn the canvas sideways to see what the artist 
intended. Examining factor structures often involves a certain amount of scrutiny and 
manipulation. Imagine that we have all of the data points on a graph. If we look at the 
graph straight on, we may not see much, but if we turn the page slightly, a clear linear 
structure may appear on the paper. When we rotate the data points along either the x or 
the y axis, we have rotated the factor structure. This is a simplistic view of factor analysis 
rotation, but it gives you a basic idea of what happens when a researcher must rotate a 
factor to determine the actual structure of the factor analysis.

APA WRITE-UP
Let’s see how the APA write-up of a factor analysis would appear in a journal:

The HA instrument was developed to measure an individual’s predisposition to 

use humor as a communicative tool during interpersonal situations. The HA is 

a 16-item, self-report measure that uses a 5-point Likert format ranging from 

1 (strongly disagree) to 5 (strongly agree).
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The dimensionality of the 16 items for the HA was analyzed using an unrotated 

principal component factor analysis. Four criteria were used to determine the 

number of factors to rotate: sampling adequacy, the a priori hypothesis that the 

measure was unidimensional, the scree plot, and the interpretability of the factor 

solution. To examine sampling adequacy, Kaiser’s measure of sampling adequacy 

(MSA) was used. The MSA obtained was 0.92, which is considered “marvelous” for 

conducting a factor analysis (Kaiser, 1974). The scree plot indicated that our initial 

hypothesis of unidimensionality was correct. The principal component analysis 

revealed a strong primary factor. The factor loadings can be seen in Figure E.6.

DISCUSSION
First, let’s remember the basic research question involved in calculating the factor anal-
ysis. Our goal was to determine whether the 16 scale items created by Richmond et al. 
(2001) measure an individual’s use of humor in interpersonal interactions using one 
factor. To analyze the results in this example, we start by discussing some of the main 
features mentioned in the APA write-up.

FIGURE E.6
Factor Analysis Humor 
Assessment

 1. I regularly communicate with others using humor.  .62

 2. People usually laugh when I make a humorous remark.  .69

 3. I am not funny or humorous. −.66

 4. I can be amusing or humorous without having to tell a joke.  .63

 5. Being humorous is a natural communication orientation for me.  .70

 6. I cannot relate an amusing idea well. −.68

 7. My friends would say that I am a humorous or funny person.  .68

 8. People don’t seem to pay close attention when I am being funny. −.62

 9. Even funny ideas and stories seem dull when I tell them. −.67

10. I can easily relate funny or humorous ideas to the class.  .64

11. My friends would say that I am not a humorous person. −.71

12. I cannot be funny, even when asked to do so. −.68

13. I relate amusing stories, jokes, and funny things very well to others.  .64

14. Of all the people I know, I am one of the “least” amusing or funny persons. −.65

15. I use humor to communicate in a variety of situations.  .68

16.  On a regular basis, I do not communicate with others by being humorous 
or entertaining.

−.61
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First, the researchers utilized an unrotated principal component analysis. In this ex-
ample, there was no need to rotate the principal component analysis because the factor 
structure was clear without a rotation.

Second, Kaiser’s MSA was used to determine whether the sample was adequate for 
performing a factor analysis. The Kaiser’s MSA is a tool to determine whether your 
sample is sufficient (robust) enough to perform the factor analysis on the number of 
items in a scale.

Third, a scree plot was used to determine whether the model was unidimensional 
(contained only one factor). A scree plot is a plot of eigenvalues. Without going into 
detail, an eigenvalue describes the variance of the set of data points in a multivari-
ate space that has one axis for each variable (Tabachnick & Fidell, 2001). And you 
probably just hit your head on the table and thought that sentence makes absolutely 
no sense whatsoever. Do not fear, however; we are here to help. In any dataset, the 
maximum number of the eigenvalues is equal to the number of scale items being 
factor analyzed. For example, the HA has 16 scale items, so the combined eigenvalue 
for the scale is 16. Then the question becomes can we minimize the eigenvalue sum 
(16) so that only one eigenvalue is above the number 1? For example, in our survey, 
the first component had an eigenvalue of 6.966 (Figure E.7), which accounted for 
43.54% of the variance. In other words, one factor accounted for 43.54% of the 
 variance in the HA scale. Ideally, for each eigenvalue above 1.0 in a factor analy-
sis, you will extract one factor. In our example here, Figure E.7 shows that there 
were  actually three factors that had eigenvalues above 1.0, with the others being 
component 2 (eigenvalue of 1.30) and component 3 (eigenvalue of 1.12). However, 
researchers have shown that relying on the eigenvalues alone for extracting factors 
can be misleading. For this reason, it is also encouraged that you examine a scree 
plot when extracting factors.

Kaiser’s Measure of Sampling Adequacy (MSA)
The way to interpret a Kaiser’s MSA is to use the 
system Kaiser (1974) created for  determining whether 
the dataset is appropriate for the factor analysis: 

• 0.9 and above is marvelous

• 0.8–0.9 is meritory

• 0.7–0.8 is middling

• 0.6–0.7 is mediocre

• 0.5–0.6 is miserable

• 0.5 and lower is unacceptable

As a general rule, Kaiser’s MSA must be at least 0.6 or 
above, but most journals expect a Kaiser’s MSA of  0.8 or 
above, with preference given to scores above 0.9.
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In Figure E.7, the scree plot is actually the plot of the eigenvalues themselves. The 
word “scree” is actually a geologic term referring to the debris that collects toward the 
bottom of a rocky slope. If you look at Figure E.7, the figure is kind of reminiscent of 
a rocky slope. The scree plot has a clear downward trajectory that then levels off and 
flattens out to the right. The first data point is placed at 6.966, and the second point is 
plotted at 1.30. To determine how many factors to extract using a scree plot, it is best to 
use the concept of looking at the elbow.

On a scree plot, there will always be at least one eigenvalue above 1.0. And in our ex-
ample, the first eigenvalue 6.966 is considerably larger than the rest of the eigenvalues. 
In fact, if you look at the scree plot, it is hard to clearly delineate the other 15 eigen-
values from each other as far as how they are plotted. This leveling off of a scree plot is 
called the elbow of the plot. Any eigenvalues separated from the elbow are considered 
actual factors, and those eigenvalues in the elbow or the tail of the scree plot are consid-
ered residuals of that primary factor.

Figure E.8 shows the scree plot associated with the factor analysis of the Sociocom-
municative Orientation Scale. Remember, this scale has two factors—assertiveness 
and responsiveness. You will note that in Figure E.8 there are two clear eigenvalue 
plots—one at 6.17 and one at 3.36—and then you see a big dip and the creation of the 
elbow of the scree plot. This is an example of what it looks like when a factor analysis has 
two clear factors that must be extracted from the data.

Once we have determined how many factors must be extracted from the data, we 
can examine how the values load. In this example, we only extracted one actual factor, 
which can be seen in Figure E.6. When examining the factor loadings (number in the 
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right column in Figure E.6), you will note that all the loadings are 0.61 and higher. 
Even if a number has a minus in front of it, it is considered a high loading on the factor 
analysis. If you look carefully, you will see that all of those items that have negative 
factor loadings are items that are reverse coded on the scale. However, a factor analysis 
can analyze a set of variables even if items have not been reverse coded because the 
factor analysis is attempting to determine whether people answer a set of scale items 
in a coherent fashion or whether participants respond one way to a certain type of 
question and another way to a different type of question. As a rule of thumb, items 
should load on a single factor at 0.50 or higher and not load another factor at 0.30 or 
higher. Often, when more than one factor is extracted from a factor analysis, an item 
will load equally high for two different factors. In essence, this means that the scale 
item is actually not measuring either factor but is instead an index of both factors, and 
since a scale can only measure one thing, that scale item must be removed if the scale 
is to be statistically valid.

Canonical Correlations
EXAMPLE
In the variable CA, there are four subscales that can be examined: group CA, meeting 
CA, interpersonal CA, and public CA. The variable WTC also has four subscales: group 
WTC, meeting WTC, interpersonal WTC, and public WTC. Suppose that you wanted 
to determine the nature of the relationship between the four subscales of CA with the 
four subscales of WTC. You could run a lot of correlations, or you could conduct one 
canonical correlation.
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EXPLANATION
A canonical correlation is a statistical tool that allows a researcher to investigate the 
relationships among two or more variable sets. In our example, we have two  different 
variable sets: CA (group, meeting, interpersonal, and public) and WTC (group, 
 meeting, interpersonal, and public). Variables in a canonical correlation must be either 
 interval or ratio level variables. All of the variables used in our example here are interval 
variables, so the canonical correlation is a good statistical tool to determine the interre-
lationships among the variables. Ultimately, a canonical analysis is the best test to use 
when examining statistical relationships between multiple interval/ratio independent 
variables and multiple interval/ratio dependent variables.

APA WRITE-UP
Let’s see how the APA write-up of a canonical correlation would appear in a journal:

The goal of this research question was to examine the relationships among 

the four CA subscales (group, meeting, interpersonal, and public) and the four 

WTC subscales (group, meeting, interpersonal, and public). A canonical cor-

relation was calculated using the four CA subscales as the predictors of the 

four WTC subscales. Using Wilks’s Λ, the overall model was significant—Wilks’s 

Λ = 0.68, F(16, 889.66) = 7.54, p < 0.001—which indicates that the two variable 

sets are significantly associated by the canonical correlation. However, only 

the first two canonical correlations were found to be significant in this study: 

canonical correlation 1, Wilks’s Λ = 0.68, F(16, 889.66) = 7.54, p < 0.001; and 

canonical correlation 2, Wilks’s Λ = 0.91, F(9, 710.80) = 3.10, p = 0.001. Canon-

ical correlations 3 and 4 were not significant: canonical correlation 3, Wilks’s Λ 

= 0.99, F(4, 586) = 0.94, p = 0.44; and canonical correlation 4, Wilks’s Λ = 0.99, 

F(1, 294) = 0.07, p = 0.80. The first variate accounted for approximately 26%of 

the variance in the dependent variable (canonical correlation [rc] = 0.51), and 

the second variate accounted for approximately 7.84% of the variance in the 

dependent variable (rc = 0.28). The exact canonical loadings for each variable 

can be seen in Figure E.9.

DISCUSSION
When examining a canonical analysis, always remember what is actually being cor-
related. In this example, we are examining the relationships between the four CA sub-
scales (group, meeting, interpersonal, and public) and the four WTC subscales (group, 
meeting, interpersonal, and public).

The first statistic reported in the APA write-up is the significance test for the whole 
model. Because our independent variable (CA) had four variables (group, meeting, 
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interpersonal, and public), we ended up with four canonical correlations to be calculated. 
The results indicated that only the first two canonical correlations were significant. This 
does not mean that only the relationships between group CA and meeting CA are signif-
icant. Instead, in a canonical correlation, the model allows the possibility that each inde-
pendent variable may function uniquely and thus need its own variate. To understand 
what the two significant canonical correlations mean, you must look at how all the vari-
ables (both independent and dependent) load on the significant canonical variates (see 
Figure E.9). We interpret each significant canonical variate separately in a fashion similar 
to interpreting a factor analysis. The stronger a variable loads on an individual variate (the 
closer that variable is to 1), then the more commonality that variable has with that specific 
variate. When looking at Figure E.9, you will see that the CA variables load negatively 
on the first variate, but that the WTC variables load positively on the first variate. This 
should be expected since CA and WTC are negatively related constructs. However, the 
story does not end there. When you look at the second variate, a new story is developing. 
The cutoff point for meaningfulness of a loaded variable on a variate is 0.30 (Tabachnick 
& Fidell, 2001), so in our example in Figure E.9, group CA, meeting CA, meeting WTC, 
and public WTC did not load on the second variate at all. Most of the variables loaded 
moderately on the variate (interpersonal CA, public CA, and group WTC). Interpersonal 
WTC is actually loaded negatively higher on the second variate than on the first variate. It 
should also be noted that interpersonal CA loads positively on the second variate.

So what does all of this mean about the relationship between the CA subscale vari-
ables and the WTC subscale variables? A lot. First, we learn that CA and WTC are 
clearly negatively related. However, the exact nature of that relationship depends on the 
subscales themselves because the subscales do not simply relate negatively. The second 
variate indicates that although interpersonal WTC, public CA, and group WTC may 
be low, it is still possible for someone to have a higher level of interpersonal CA. In other 
words, there are some people who do not exhibit high levels of public speaking CA, but 
who may still experience high levels of interpersonal CA.

Variable Variate One Variate Two

Group Communication Apprehension –.81  .16

Meeting Communication Apprehension –.94 –.13

Interpersonal Communication Apprehension –.88  .41

Public Communication Apprehension –.74 –.46

Group Willingness to Communicate  .81 –.41
Meeting Willingness to Communicate  .89 –.17
Interpersonal Willingness to Communicate  .61 –.67

Public Willingness to Communicate  .94  .08

FIGURE E.9
Canonical Variate 
Loadings
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In this appendix we have introduced 

you to a variety of advanced statistical 

techniques, shown you how their results 

may appear in a research article, and dis-

cussed seven research questions (that 

could be answered using the dataset 

on the textbook’s website) and one hy-

pothetical research question. We have 

looked at four difference tests (factorial 

ANOVA, ANCOVA, MANOVA, and 

 repeated-measures ANOVA) and four 

relationship tests (path analysis, struc-

tural equation modeling, factor analysis, 

and canonical correlation). This appendix 

concludes our investigation of actual sta-

tistical techniques that communication 

researchers use to answer social scientific 

research questions. 

concluSion

GLOSSARY
Analysis of Covariance (ANCOVA): Statistical test that allows a researcher to determine 

whether a difference lies between groups on a dependent variable after the dependent 
variable has been mathematically adjusted for differences associated with one or more 
covariates.

Canonical Correlation: A statistical tool that allows a researcher to investigate the rela-
tionships among two or more variable sets.

Covariate: A possible predictive or explanatory variable that is observed rather than ma-
nipulated but that can have an effect on the dependent variable.

Endogenous Variables: Variables in a path analysis or structural equation model that are 
explained by one or more of the other variables in the model.

Exogenous Variables: Variables in a path analysis or structural equation model that are 
taken as given, measured variables.

Factor Analysis: A statistical device that enables researchers to determine whether the 
responses on a set of scale items actually measure a single construct or multiple 
constructs.

Factorial ANOVA: Statistical test in which a researcher has multiple nominal independent 
variables and one interval/ration dependent variable.

Interaction Effect: Statistical difference test in a factorial ANOVA where differences on 
a dependent variable are examined by analyzing the combinations of the independent 
variables.

Law of Parsimony: Scientists should look for the simplest assumption in the formulation 
of a theory and the simplest test to interpret data.

Main Effects: Statistical difference test in a factorial ANOVA where differences on a 
 dependent variable are examined for each independent variable separately.

Multivariate Analysis of Variance (MANOVA): Difference test that can utilize one or 
more nominal, independent variables and two or more related interval/ratio depen-
dent variables.

Multivariate Test: Statistical test with two or more related dependent variables.
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Path Analysis: Extension of the general linear model used to test the fit of two or more 
causal models.

Repeated-Measures ANOVA: Statistical test that allows a researcher to determine 
whether differences in the same interval/ratio variable occur over three or more mea-
surements of the variable.

Structural Equation Modeling: Powerful multivariate analysis that enables a variety of 
specialized versions of other statistical tests, including regression models, causal mod-
eling, confirmatory factor analysis, second-order factor analysis, covariance structure 
models, and correlation structure models.

Univariate Test: Statistical test with one dependent variable.
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