Name:

The questions below pertain to this row:

Demo: Locate one opportunity for trichordal invariance within P₄ and demonstrate the invariance.

		[46T]	◄-		I ₃					→ [59E]			
$P_4 =$	4	6	Т	7	3	2	0	1	9	5	Е	8	
ор	1	2	3	4	5	6	7	8	9	10	11	12	

This indicates that the trichords at op <1-2-3> and <9-10-11> will switch places when P_4 is transformed by I_3 . The I_3 -transform of P_4 is I_E :

		[59E]	-			I ₃				[46T]		
I_E =	Е	9	5	8	0	1	3	2	6	Т	4	7
ор	1	2	3	4	5	6	7	8	9	10	11	12

- 1. Locate another opportunity for trichordal invariance within P_4 (not the same trichord type as the Demo) and demonstrate the invariance.
- 2. Locate one opportunity for tetrachordal invariance within P₄ and demonstrate the invariance.
- 3. Demonstrate the potential for P₄ to produce hexachordal combinatoriality.
- 4. Use the first hexachord of P_4 as the generator of a rotational array, with each line transposed to begin on the same pitch class. Give the contents of columns 2–6 of the array in normal/prime form.