
Chapter 9

Scraping Sites That Use JavaScript and AJAX

As of August 2017, the website used for this tutorial had been archived by the Sudbury and District Health Unit,

and was soon to be replaced. This tutorial has been updated to use the embedded Firebox developer tools. With the

coming phaseout of the Sudbury food site, this tutorial will be replaced by a revised tutorial scraping a different live site.

Once complete, the new tutorial will be posted to thedatajournalist.ca/newtutorials and will be posted on the Oxford

University Press ARC site during the next refresh in summer 2018.

Skills you will learn: How to make GET requests to obtain data that updates a web page using

Ajax; building a more complex multi-layer Ajax scrape; creating functions to reduce duplication in

your code; using the JSON module to parse JSON data; Python dictionaries; Python error handling;

how to use Firebug as part of the development of a more difficult scraping project.

Getting started

Like many communities throughout Canada and the U.S., the Sudbury and District Health Unit

provides basic details about health inspections to the public via a website. You can go to the site at

https://www.sdhu.com/inspection-results#/

If you click on the Inspection Results icon you’ll see that the page soon populates with basic results

of inspections.

https://www.sdhu.com/inspection-results#/

If you are a journalist in the Sudbury area, you’d probably love to analyze the performance of

establishments in health inspections. But while the data is online, there’s no easy link to download it.

You may have to scrape it. Trouble is, this page is a toughie.

If you take a look at the HTML of the page using Page Source we see soon enough that the results

we see on the screen are not in the page source. There is a lot of JavaScript code, and some skeletal

HTML for contact information and social media icons, but little else. If you click to get details on

one of the establishments, the browser updates with the information requested, but URL for the

page stays the same.

This means that if we were to write a scraping script that tried to parse the inspection results out of

the HTML page sent by the web server, we would be stopped in our tracks. The page is using

JavaScript and the AJAX protocol to populate the page we see in the browser (if you are unsure of

what Ajax is, see the explanation in Chapter 9 of The Data Journalist).

Fortunately, there are ways we can grab the data being sent by the server to update the page.

We’ll begin by having a look at what is happening using the network tab in Firefox developer tools.

If you are unsure about the basics of development tools, see the tutorial Using Development

Tools to Examine Webpages on the companion site to The Data Journalist.

We can see that there was one XHR request made for JSON data and it was a GET request. That

means that we can make the request ourselves by using the same URL.

(If the site used a POST request, one that sends the data for the request as part of the HTML

headers of the request, we’d have to handle things differently.

In fact, if we paste the URL into a new browser tab, we can see the response, which is some JSON.

We can also see the JSON in a neater, easier-to-read format in Firefox developer tools:

If we liked, and all we wanted was a list of the businesses, their locations, and whether they are

currently in compliance, we could simply copy and paste this JSON into an online converter such as

http://www.convertcsv.com/json-to-csv.htm, and paste the result directly into Excel. The simple

scraper we will build next will duplicate that functionality.

Because the JSON can be fetched via a simple GET request, all our scraper needs to do is send a

request in the usual way, then parse the JSON and turn it into a CSV file. The first part is nothing

we haven’t done in simpler scrapes, and the second can be accomplished using Python’s built in

JSON module.

The first three lines of our script aren’t any different from scripts we have written before.

1. import urllib2

2. import json

3. import unicodecsv

4. mainPage = urllib2.urlopen('https://www.sdhu.com/wp-

content/themes/sdhu-child/api/api.php?action=facilities

&filter=inspection-results').read()

5. output =

open('C:\Users\Owner\Dropbox\NewDataBook\Tutorials\Chapter9\9_9_Java

scriptScrapes_AJAX\SudburyFood.csv','w')

6. fieldNames =

['FacilityMasterID','FacilityName','SiteCity','SitePostalCode','Site

ProvinceCode','Address','InCompliance']

The first three lines import the modules we will use in the script. All but unicodecsv are standard

library modules, but unicodecsv will have to be installed using pip if you haven’t already done so.

Line 4 uses urllib2’s urlopen method to make a request to the URL we extracted using Firebug and

assign the response object to the name ‘mainpage’. In line 5 we open a new file for writing and

assign the file-like object to the name ‘output.’ Line 6 assigns a list containing the file headers for

the data to the name ‘fieldName.’ We figured out the headers by examining the JSON in Firefox

developer tools.

We could, if we wanted, reorder the fields to whatever order we liked, because the dictionary writer

we will create in the next line will order the fields in the output CSV by whatever order we choose

for the fieldnames in the fieldnames = argument. The key thing is that the fieldnames listed in the

dictionary must be present in the list of fieldnames, spelled exactly the same way. Otherwise, you

will get an error.

The next line creates a unicodecsv Dictwriter object and assigns it to the name ‘writer.’ In previous

tutorials and in the body of Chapter 9, we used the regular writer object and passed in parameters

for the file delimiter to be used and the encoding. But unicodecsv and the standard library csv

module also have a method for writing Python dictionaries to csv files. As the output of our JSON

module is a dictionary and we don’t really need to alter the output at all, we’ll just write the

dictionary directly to the output file. More on dictionaries in a moment.

7. writer = unicodecsv.DictWriter(output,fieldnames = fieldNames)

8. writer.writeheader()

In line 8 we write the headers using our Dictwriter’s writeheader() method. We set the fieldnames in

line 7, so these are the names that writeheader() will use for the headers.

In line 9, we will put the JSON module to use. The JSON module has a method called .loads() that

parses JSON, converting each JSON object into a dictionary, and an array (array is the term used in

JavaScript and many other programing languages for what Python calls a list) of JSON objects into a

list of dictionaries.

9. theJSON = json.loads(mainPage)

A primer of dictionaries

We haven’t talked much about dictionaries. Dictionaries are a python data type that is what

computer scientists call a mapping. This isn’t the kind of mapping we dealt with in Chapter 6, of

course, but instead is the mapping of values. In a dictionary, values are stored in key/value pairs.

Each value is bound to a key. Think of it as being a lot like a table in Excel or a database. The key is

the field name, the value is the field value. This is an example of a simple dictionary given in the

official Python documentation at https://docs.python.org/2/tutorial/datastructures.html

tel = {'jack': 4098, 'sape': 4139}

Here, a new dictionary is assigned to the name tel, for telephone numbers, and each key value pair in

the dictionary is a name and its associated phone number.

To see the value for any key/value pair, you use a construct quite similar to that which we saw with

lists, except that instead of using an index number, we use the key name to get the value.

tel['jack']

You can also extract the value for any key value pair using the get() method.

tel.get('jack')

This sort of dictionary is useful for a very simple task, such as storing a single phone number. More

complex dictionaries can be used to hold many different pieces of data.

For example, this dictionary stores information about the author of this tutorial.

{‘name’:’Fred Vallance-Jones’,’employer’:’University of king\’s

college’,’expertise’:’Python’,’sport’:’cross-country skiing’}

If we wanted to have numerous authors, we could create either a list of dictionaries, or a dictionary

with additional embedded dictionaries. Here is a simple list of dictionaries with the two authors and

two contributors of this book.

authors = [{'name':'Fred Vallance-Jones','employer':'University of

kings college','expertise':'Python','sport':'cross-country skiing'},

{'name':'David McKie','employer':'CBC', 'expertise'\notice

:'Excel','sport':'cycling'},

{'name':'William Wolfe-Wylie','employer':'CBC','expertise':'JavaScript

development','sport':'cycling'},

{'name':'Glen McGregor','employer':'CTV','expertise':'Investigative

Reporting','sport':'walking'}]

We can now use standard list indexing to grab the first element in the list, which is a dictionary.

authors[0]

Gives us…

{'sport': 'cross-country skiing', 'expertise': 'Python', 'name': 'Fred

Vallance-Jones', 'employer': 'University of kings college'}

Notice that the key/value pairs were not returned in the same order in which we entered them in the

original dictionary. That’s a normal behaviour of dictionaries, and it doesn’t really matter because we

can always extract the value we want using its named key.

If we combine the previous command with our .get() method for the embedded dictionary, we

would write:

authors[0].get('expertise')

Which would give us:

'Python'

We could represent the same data in a pure dictionary, with the value for each name being another

dictionary structure:

authors = {'Fred Vallance-Jones':{'employer':'University of kings

college','expertise':'Python','sport':'cross-country skiing'},

'David McKie':{'employer':'CBC',

'expertise':'Excel','sport':'cycling'},

'William Wolfe-Wylie':{'employer':'CBC','expertise':'JavaScript

development','sport':'cycling'},

'Glen McGregor':{'employer':'CTV','expertise':'Investigative

Reporting','sport':'walking'}}

We could then extract the information for any one of the authors using the get() method:

authors.get('Fred Vallance-Jones')

Would give us….

{'sport': 'cross-country skiing', 'expertise': 'Python', 'employer':

'University of kings college'}

To retrieve a single value from the above dictionary we could write:

authors['Fred Vallance-Jones'].get('expertise')

Because the value for each key/value pair in the main dictionary is another dictionary, we use the get

method to extract the value from the specified key in the inner dictionary.

'Python'

This kind of statement is at the heart of parsing dictionaries, something we will have to do when we

use the JSON module to turn the JSON returned by the web server into a dictionary.

Alright, let’s go back to our script. Remember that we had written this in line 9:

theJSON = json.loads(mainPage)

If we were to print theJSON to the screen, we would see a list of dictionaries much like we

examined a moment ago. Here is a short excerpt:

[

{u'InCompliance': u'Yes', u'SitePostalCode': u'P0P 1S0',

u'FacilityMasterID': u'5DA264CD-641C-44FA-9FE5-6C0D8980B7C8',

u'SiteProvinceCode': u'ON', u'SiteCity': u'Mindemoya',

u'FacilityName': u'3 Boys & A Girl', u'Address': u'6117 Highway 542

'}, {u'InCompliance': u'Yes', u'SitePostalCode': u'P0M 1A0',

u'FacilityMasterID': u'46E2058D-C362-49A2-9ECD-892F51A4F1FB',

u'SiteProvinceCode': u'ON', u'SiteCity': u'Alban', u'FacilityName':

u'5 Fish Resort & Marina - Food Store', u'Address': u'25 Whippoorwill

Rd'}

]

To make the structure obvious, we have put the square brackets that surround the list on separate

lines here. The small u characters before each text entry indicate that the text is encoded as Unicode.

As you can see this structure is the same as our list of author dictionaries. Each item in the list is a

dictionary.

From here, our script is straightforward.

The last two lines will loop through the list of dictionaries, and write each line to the CSV user the

unicodecsv DictWriter we created back in line 7.

10. for dict in theJSON:

11. writer.writerow(dict)

Line 10 initiates a standard for loop which will iterate through the list of dictionaries that we named

theJSON. We’ll call our iteration variable dict to make it clearer that each item in the list is a

dictionary. Finally, in line 11, we’ll use our DictWriter to write the dictionary to the CSV.

The result, opened in Excel, looks like this:

Fantastic! We scraped a site that uses JSON.

But this site has more than one layer of information, each one reached by clicking on more

links/icons that fire more JavaScript and more AJAX calls back to the server.

From here, the logic involved in scraping this site gets a lot more involved. We will write loops

within loops within loops, and write to three different output files. If you are just beginning, some of

what follows will bend your brain into contortions you didn’t realize were possible. We will

introduce several Python constructs we have either never seen before, or just discussed in passing,

including functions and error handling. It’s a lot of material, and more advanced than we have seen

till now, so don’t despair if you have trouble understanding it the first time through.

Alright, let’s get back to our layers of JSON.

For each establishment, a visitor to the website can click on an Inspection History dropdown arrow:

That then reveals details about when the establishment was inspected and the overall result.

Details are only provided for the establishment you clicked on, because the page is being changed

through another AJAX call. Remember that we can see what is going on when we interact with a

browser by using Firefox developer tools. Let’s see what shows up in the network tab when we

click on the Inspection History link.

As you can see, one GET request was made to the server to get the detail on the inspection. It had

this URL when we scraped it:

https://www.sdhu.com/wp-content/themes/sdhu-

child/api/api.php?action=inspections&id=D4AD0F10-395F-4386-B92A-98F9B63D0891

The most interesting thing about this request is that it contains a long alphanumeric ID at the end

that looks just like the facility master ID we scraped for each establishment, from the main page. It

looks as if that ID is being used to tell the server, when you click on the Inspection History

dropdown, which details to return. Everything that follows id= is the unique ID. That being the

case, we can use the ID to fetch the details for each establishment, in a script. Let’s look at the

response that comes back, which is again, JSON.

[{"InspectionID":"FEEDB8CC-02F9-4B6A-8FE0-B705DE810D7B","InspectionDate":"2016-09-

30 00:00:00","RowStatus":"A","InCompliance":"No","InspectionType":"Compliance Inspection"}]

We see the same pattern as we saw in the JSON for the main page, an array of JSON objects, each

of which has a unique inspection ID, an inspection date, something called RowStatus, a field

indicating if the establishment was in compliance, and the inspection type. In the above image you

can see three separate JSON objects in the array, separated by commas. We know from our previous

example that if we use the loads() method in the JSON module that this array of JSON objects will

https://www.sdhu.com/wp-content/themes/sdhu-child/api/api.php?action=inspections&id=D4AD0F10-395F-4386-B92A-98F9B63D0891
https://www.sdhu.com/wp-content/themes/sdhu-child/api/api.php?action=inspections&id=D4AD0F10-395F-4386-B92A-98F9B63D0891

be converted to a Python list of dictionaries, from which we will be able to extract the details we

want.

Also note that the data structure that is being used mirrors a relational database, and was probably

extracted from one. For each establishment there is a main ID, and for each inspection, an

inspection ID.

But we’re not done. If we go back to the page in our browser, you can see that for each inspection,

there is a link for even more detail.

If we click on one of the Details icons, we get details about the specific infractions, if any, along with

detail about the establishment:

If we look at the Network tab in Firebug, we can again see what request(s) was/were made to the

server to fetch this information.

This time, we can see there were two GET requests. If we look at each in turn, we see that the first

one requests the inspection details, using the unique inspection ID.

The returned JSON looks like this:

[{"Question":"Equipment, non-food contact surfaces and linen are

maintained, designed, constructed, installed and accessible for

cleaning","InCompliance":"Corrected During Inspection"}]

This is pretty simple. We get the “question,” which is the aspect the inspection, and

“InCompliance,” which is the result of the inspection for that aspect. We can scrape that easily.

If there is more than one issue, then there are more dictionaries in the array.

A close inspection reveals that this information is only generated when there is an issue discovered

during the inspection. There is a response from the server, but it is empty of content, when the
establishment passed. A look at the headers for the response for a passed inspection shows that

indeed, nothing is returned. There is also no JSON.

The second request when you click on the details link uses the main facility ID again to request

details about the establishment to include in the details popup.

This request is made for both requests with issues and those without. The JSON in the response

looks like this:

{"FacilityDetailID":"57AF5646-76CD-412A-B165-

D46CAF9C853B","FacilityMasterID":"D4AD0F10-395F-4386-B92A-

98F9B63D0891","FacilityName":"84 Station - Coffee

Shop","FacilityCategory1":"Food,

General","FacilityCategoryStyleID":"D7A1A2AC-5D5C-4E87-88B2-

011F08A93AC5","FacilityCategoryStyle1":"Cocktail Bar \/ Beverage

Room","SiteUnitNumber":null,"SiteFrom":"84","SiteStreet":"Elgin

Street","SiteCity":"Sudbury","SitePostalCode":"P3E

3N3","SiteProvinceCode":"ON","SiteProvince1":"Ontario","SiteTelephone"

:"662-3757","Address":"84 Elgin Street","FacilityNumber":"SUD-160-

0000011"}

A close look at the response shows that it actually gives us some more detail about the establishment

that was not included on the main page, such as the type of establishment, a general category in

which it fits, and a phone number. There is no reason we can’t scrape some of that detail into our

final results (though as you will see, we will leave that task to you as a challenge).

This examination of all the responses and requests suggests we can scrape the data out into at least

three related tables, one to contain the master details about the establishment, the second the

overview of each inspection, and the third the details of each inspection for which there was an

issue. It makes sense to proceed this way because for any establishment there may be several

inspections and for any inspection there may be several issues found. Trying to put everything

together into a single flat file table would result in significant duplication, which as we learned in

Chapter 5 is something we try to avoid when designing data tables.

Let’s try to figure out how we would perform this rather more difficult scrape. Since we’ve already

written the code to scrape the master data, we can simply incorporate that into our new script. That

said, we’ll need quite a bit of new code.

Conceptualizing our scrape

In Chapter 9, we indicated that it is a good idea to conceptualize what a scrape will look like before

writing the code.

Based on the exploration of the site above, this is what our scraper would need to do.

1. Go to the main inspection page and retrieve the array of JSON objects that contains the

main details for each establishment and whether it is currently in compliance.

2. Convert the array to a list of dictionaries using the JSON module.

3. For each dictionary:

a. Write it to the main details CSV file.

b. Grab the facility master ID

c. Request the inspection overview for that establishment, from the server, using the

facility master ID.

d. For each inspection in the inspection overview:

i. Convert the returned array of JSON objects using the JSON module.

ii. Write the data to the inspection overview CSV file along with the facility

master ID.

iii. Grab the unique inspection ID.

iv. For inspections that were not in compliance, request the inspection details

using the inspection ID.

v. For each issue in the inspection details:

1. Convert the returned array of JSON objects using the JSON module

2. Write the details to the inspection details CSV file, along with the

inspection ID.

There are a lot of layers involved, but it is easy enough to see what kind of Python structure will be

required. There will be a main request, then for each main item, we will need to iterate through all

the inspections, and for each of those inspections, we will need to iterate through each of the details.

The code will be a series of for loops, each nested within the next, in a manner that echoes the

conceptual structure we have above. There will also have to be a conditional structure, otherwise

known as an IF statement, to skip the request for inspection details when an establishment passed.

Let’s take our conceptualized scrape, and convert it to some code we can run. The completed code

for this tutorial is available as AJAXScape.py on the companion website to The Data Journalist. Here,

we will walk through the code from top to bottom. Note that it is possible that with a change in the

website, the code will no longer work. The tutorials will be updated at least annually.

1. import urllib2

2. import json

3. import time

4. import unicodecsv

The first part of the new script imports the necessary modules, and is the same as the simpler script

that scrapes just the main page, except that we are also now importing the time module, which will

allow us to implement something critical in scraping scripts, and that is a delay between requests to

the server. If we don’t put in a delay, our scraper can go back to the server dozens if not hundreds

of times per second, which could bring down some smaller servers and would likely be interpreted

as a criminal attempt to attack the server, even by larger entities.

The next section of the script defines two functions. We have not used many functions before in

our scripts, so we’ll explain what is going on here. These two functions consolidate the opening of

the output file and the instantiation of the unicodecsv writer so that when these actions need to be

performed repeatedly, we don’t have to write out the code each time. As well, if we have to change

the code in the future, say to change the location where we are saving the output files, or to change

the field delimiter used by the writer, we can make the change in one place. There is a principle in

programming that goes by the acronym DRY, which means “don’t repeat yourself.” These simple

functions prevent unnecessary repetition.

To define a function, use the def keyword, followed by the name you are giving to the function and

a set of parentheses. Inside the parentheses, you put the arguments for the function, which stand in

for values that you will pass into the function at run time. The passed in values are then used within

the function, and the return keyword designates what will be passed out of the function after it runs

(to run a function, we “call” it from within our program). So you pass in some values, the function

does something with them, then the function returns something back to the script that called the

function.

As a side note, when you use a method, either one of the built-in methods that come with Python

such as the str() function, or a method defined by a module you import, you are actually running a

function, just one that was already written for you.

In this case, the function we are writing takes a string representing the name of a file as its only

argument. Within the function, that passed in file name is concatenated with the rest of the code

used to open a new file for writing. The opened file object is then returned by the function. Note

that the body of the function is indented in the same way as the body of other code blocks, such as

those within conditional statements or loops. Indenting is Python’s way of saying “this code belongs

to that construction up above.” When you stop indenting, Python assumes the subsequent code is

no longer part of the function, conditional statement or loop. If you fail to indent, or indent where

you shouldn’t, you’ll get an error.

5. def makeFile(fileName):

6. theFile = open('C:\Users\Owner\Dropbox\NewDataBook\

 Tutorials\Chapter9\9_9_JavascriptScrapes_AJAX\\' + fileName +

'.csv', 'wb')

7. return theFile

The next function takes the name of a file-like object as its only argument, and returns an

instantiated unicode csvwriter object. When we run it, we’ll pass in the file created by the makeFile

function.

8. def makeWriter(handle):

9. theWriter = unicodecsv.writer(handle, delimiter=',')

 return theWriter

Line 10 is the same as line 4 in our previous script; it uses the urlopen method of urllib2 to fetch the

main inspection results. Remember that we are fetching the JSON that populates the page, not the

main health unit page, because the site uses AJAX to populate the page with results.

10. mainPage = urllib2.urlopen('https://www.sdhu.com/wp-

content/themes/sdhu-

child/api/api.php?action=facilities&filter=inspection-

results').read()

Next, we see the first use of the .sleep() method of the time module. This will insert a wait of 10

seconds after the request to the server. Ten seconds is generous, and should ensure we don’t put an

onerous load on the Sudbury servers. That said, for much larger sized servers, shorter intervals can

probably be used, but never make more than one request a second to a server unless you have

permission from the server administrator. Chapter 9 of The Data Journalist has a longer discussion of

the ethics and legalities of web scraping.

11. time.sleep(10)

The next three lines use our makeFile function, defined near the top of the script, to open three

CSV files for writing our three tables.

12. output1 = makeFile('SudburyFood5')

13. output2 = makeFile('SudburyFoodInspecOverviews5')

14. output3 = makeFile('SudburyFoodInspecDetails5')

In line 15, we create a list with the field names for SudburyFood5. These are the same field names

we used in our original script.

15. fieldNames1 =

['FacilityMasterID','FacilityName','Address','SiteCity','SiteProv

inceCode','SitePostalCode','InCompliance']

The next line of the script echoes our original script as well. We are creating a DictWriter instance

for writing the main file. It takes as its arguments the output1 file handle and the fieldnames list we

just created. In line 17, we write the fieldnames to the header of the file.

16. writer = unicodecsv.DictWriter(output1,fieldnames =

fieldNames1)

17. writer.writeheader()

Lines 18 to 19 use our makeWriter function to instantiate CSV writers to write to our other two

files, then lines 20 and 21 write the headers for the two files. The reasons for the field names will

become apparent later in the script.

18. writer2 = makeWriter(output2)

19. writer3 = makeWriter(output3)

20. writer2.writerow(["FacilityMasterID","InspectionID","Inspec

tionDate","RowStatus","InspectionType","InCompliance"])

21. writer3.writerow(["FacilityMasterID","InspectionID","Issue"

,"Outcome"])

The next four lines are slightly modified lines from our original script. Line 22 uses the JSON

module’s load method to create a list of Python dictionaries from our downloaded data in mainPage.

We then use the same loop we used in the first script, but in addition to writing the data to the main

file, we also use the .get() method to grab the facility master ID from each of the dictionaries.

22. theJSON = json.loads(mainPage)

23. for dict in theJSON:

24. idValue = dict.get('FacilityMasterID')

25. writer.writerow(dict)

Next, we see, for the first time in our scripts, an error handling routine. If an error occurs while

running a script, and you have not done anything to handle that error, the script will terminate and

the Python interpreter will report the error. In this case, we could encounter an error when the script

tries to access the inspection overview for an individual establishment. The error could be caused by

your Wi-Fi connection going down, an outage with the server, or less likely, a bad URL. There could

also be an error caused by a problem with the JSON returned by the server, causing the parsing

routine that follows to fail.

To handle possible errors, use the try/except clause.

First, enter the keyword try, followed by a colon. As with any other code block, what follows the try

keyword is indented one tab stop or four spaces (don’t mix tabs and spaces.

Within the try block, place the code you want to run.

Then, at the same indent level as the try clause, write the except clause, again followed by a colon.

In this case, the except clause is actually at the end of the script because the code block we are trying

to run encloses everything else that follows, including the nested loop that extracts the inspection

detail information. Lines X and Y tell the interpreter that if the block above fails then to put the

message for the error into a variable, then print it to the screen. That way, when the script has

finished running, you’ll be able to review any reported errors to see if you need to change anything

in your script.

26. try:

Lines 27 and 28 use the urlopen method to fetch the inspection overview information for the

current establishment, then wait 10 seconds. The URL comes from the examination using Firebug

of the request made to the server when a user clicks on Inspection History. That URL changes with

each establishment to include the unique ID for that establishment, so we concatenate the part that

doesn’t change with the unique ID that we extracted in line X, then apply the .read() method to the

result, storing it all in inspecOverview. Notice that in the concatenation of the idValue, we are

applying the str() function to ensure that it is a string value and not a number. You can’t concatenate

a number and a string value.

27. inspecOverview =

urllib2.urlopen('https://www.sdhu.com/wp-content/themes/sdhu-

child/api/api.php?action=inspections&id=' + str(idValue)).read()

28. time.sleep(10)

In line 29, we use the .loads() method of the JSON module to convert the data we just retrieved into

a list of dictionaries. This is followed by a block in lines 30 to 39 that iterates through the list of

dictionaries, and for each iteration creates an empty list called detailList, uses the get() method to

grab specific data elements from each dictionary, creates a list called detailList containing the

elements just extracted, uses the unicode csvwriter to write that list to the output file, then

overwrites the list with an empty list. This last step is an extra precaution to ensure that contents of

the list from a previous iteration are never written to a later line in the file. Notice that we have given

the iterator variable oDict a name that gives some sense of what it is, in this case a dictionary

containing overview information.

29. overviewJSON = json.loads(inspecOverview)

30. for oDict in overviewJSON:

31. detailList = []

32. inspectionID = oDict.get("InspectionID")

33. inspectionDate = oDict.get("InspectionDate")

34. rowStatus = oDict.get("RowStatus")

35. inspectionType = oDict.get("InspectionType")

36. inCompliance = oDict.get("InCompliance")

37. detailList =

[idValue,inspectionID,inspectionDate,rowStatus,inspectionType,inC

ompliance]

38. writer2.writerow(detailList)

39. detailList = []

Now that we have written the overview information for this inspection to the overview csv, we need

to do the script equivalent of clicking on the Details link on the webpage. But we only want to do it

when the inspector found issues. We know that if the establishment passed, there is nothing further

to be obtained from the details. We can save a request to the server this way, which with the delays

will add up to a lot of saved time over the running time of the script.

Line 40 uses an if expression to test to see if the inCompliance variable, extracted in the last part of

the script, points to the string “No.” You’ll notice that in this comparison, we are using not a single

= sign but a double == sign. This is because a single = sign is the assignment operator (see Chapter

9 of The Data Journalist if this terminology is unfamiliar to you) and a double == sign is the equality

operator. Do the two things on either side of == sign have the same value, in this case the string

“No”? If they do, then the actions within the code block that follows will be run. If not, the script

will simply ignore everything that is within the if statement block. As you can see below in lines 42

to 51, the entire routine to fetch the details for an inspection is within the if block and will only run

if inCompliance equals “No” .

40. if inCompliance == "No":

In line 42, we use our now familiar urlopen() method to make a request for data from the Sudbury

food inspections site. Again, we are using a URL that we found by using Firebug to see the request

made when we clicked on the Details link. Because the request URL has a part that is always the

same, and a part that changes, we use concatenation to join the unchanging, base URL, with the

inspection ID that we extracted in the previous routine. The inspection ID is needed to get the

details for that inspection. We then apply the .read() method to read out the returned JSON data and

store it in inspecDetail. After that, we again use time.sleep() method to make sure the script stops

executing for 10 seconds after the request to the server. Note that we are once again wrapping our

routine for fetching and processing the detail JSON in a try/except statement, so any errors in

fetching the data or processing it will be caught rather than bringing our script to a halt.

41. try:

42. inspecDetail = urllib2.urlopen('

https://www.sdhu.com/wp-content/themes/sdhu-

child/api/api.php?action=inspection-

details&id='+str(inspectionID)).read()

43. time.sleep(10)

The next routine essentially repeats what we did when we extracted the overview information.

Again, we use the .loads() method of the JSON module to convert the fetched JSON data into a list

of dictionaries. Remember that the fetched JSON is always an array of JSON objects, which is why

we end up with a list of dictionaries. We then iterate through the dictionaries stored in the list, and

from each one extract the data we want, before writing these to a list along with the master facility

ID and the inspection ID, and writing the list to the CSV file.

44. detailJSON = json.loads(inspecDetail)

45. for dDict in detailJSON:

46. fineDetailList=[]

47. question = dDict.get('Question')

48. inCompliance = dDict.get('InCompliance')

49. fineDetailList =

[idValue,inspectionID,question,inCompliance]

50. writer3.writerow(fineDetailList)

51. fineDetailList = []

52. except Exception, e:

53. print e

54. except Exception, e:

55. print e

At the conclusion of this innermost loop, the script then goes back to the next inspection overview

dictionary, if there is one, scraping that data before again testing to see if the inspection failed, and if

it did, running the innermost loop again. Once all of the overview items have been scraped, the

script goes back to the main loop and starts again with another establishment, fetching its overview

data, and so on. In this way, all of the data at all three levels is collected and written to the three

output files. Any errors encountered along the way are printed to the screen, so we know what

happened. If we were so inclined, we could change the script to write those error lines to the

appropriate output file, so we would have a permanent record of where the errors occurred.

More functionality could be added to the script. For example, you could decide to grab some of the

additional information about the establishments that is fetched by the second request to the server

when a user clicks on the Details link. You could also have the script skip writing any overview or

detail data for inspections previously scraped. To do this, the script would need to check the

previously written overview file to see if an inspection id was already present, and if it was, move on

to the next one. The only caution with this approach is it is possible inspection results could be

revised to correct errors, and you would never get the corrections. Of course, you could also get the

script to check not only to see if the inspection id was already present, but whether the recorded

results were the same.

All of which is to say, you have a great deal of power to write your scripts as you want, and include

functionality as you please. This is one of the reasons why writing your own scripts is so often

preferable to using off-the-shelf scraping programs.

