Vertebrate Life 10e Chapter 04 References

All of the sources that the authors consulted in preparing this chapter, as well as many of the sources from previous editions.

Alves-Gomes JA. 2001. The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective. Journal of Fish Biology 58:1489-1511. http://doi.wiley.com/10.1006/jfbi.2001.1625 

Archer R. 2016. Stunning suppers with an electric attack. Journal of Experimental Biology 219:612. doi: 10.1242/jeb.129882

Baron VD, Morshnev KS, Olshansky VM, Orlov AA. 1994. Electric organ discharges of two species of African catfish (Synodontis) during social behaviour. Animal Behaviour 48:1472-1475. http://dx.doi.org/10.1006/anbe.1994.1387 

Baron VD, Olshansky VM. 2009. Monopolar electric discharges of the catfish Parasilurus asotus (Siluridae, Siluriformes). Journal of Ichthyology 49:403-408. http://link.springer.com/10.1134/S0032945209050063 

Baron VD. 2009. Electric discharges of two species of stargazers from the South China Sea (Uranoscopidae, Perciformes). Journal of Ichthyology 49:1065-1072. http://link.springer.com/10.1134/S0032945209110058 

Bayani, D-M, Taborsky M, Frommen JG. 2017. To pee or not to pee: urine signals mediate aggressive interactions in the cooperatively breeding cichlid Neolamprologus pulcher. Behavioral Ecology and Sociobiology 71:37.  10.1007/s00265-016-2260-6

Bellono NW, Leitch DB, Julius D. 2017. Molecular basis of ancestral vertebrate electroreception. Nature 543:391-396. 10.1038/nature21401

Bleckmann H, Zelick R. 2009. Lateral line system of fish. Integrative Zoology 4:13-25.  https://doi.org/10.1111/j.1749-4877.2008.00131.x

Carlson BA, Gallant JR. 2013. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. Journal of Neurogenetics 27:106-109. http://www.tandfonline.com/doi/full/10.3109/01677063.2013.799670 

Carlson BA. 2016. Animal behavior: Electric eels amp up for an easy meal. Current Biology 25:R1070-1072.  http://linkinghub.elsevier.com/retrieve/pii/S0960982215011628

Catania KC. 2016. Electric eels concentrate their electric field to induce involuntary fatigue in struggling prey. Current Biology 25:2889-2898. http://linkinghub.elsevier.com/retrieve/pii/S0960982215011471 

Catania KC. 2016. Leaping eels electrify threats, supporting Humboldt’s account of a battle with horses. Proceedings of the National Academy of Sciences 113:6979-6984. http://www.pnas.org/lookup/doi/10.1073/pnas.1604009113

De Vlaming VL, Sage M. 1973. Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comparative Biochemistry and Physiology 45A:31-44. http://www.sciencedirect.com/science/article/pii/0300962973900066

Denton EJ, Liddicoat JD, Taylor DW. The permeability to gases of the swimbladder of the conger eel (Conger conger). Journal of the Marine Biology Association of the United Kingdom 52:727-746. http://journals.cambridge.org/abstract_S0025315400021676

Dixson DL, Pratchett MS, Munday PL. 2012. Reef fishes innately distinguish predators based on olfactory cues associated with recent prey items rather than individual species. Animal Behaviour 84:45-51. http://linkinghub.elsevier.com/retrieve/pii/S0003347212001583

Evans DH, Piermarini PM, Choe KP. 2005. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid- base regulation, and excretion of nitrogenous waste. Physiological Reviews 85:97-177.  https://doi.org/10.1152/physrev.00050.2003

Evans DH. 1980. Osmotic and ionic regulation by freshwater and marine fishes. In Ali MA (ed.) pp. 93-122. Environmental Physiology of Fishes. Springer Science and Business Media, New York NY.

Faraday M. 1839. Notice of the character and direction of the electric force of the GymnotusPhilosophical Transactions of the Royal Society of London 129:1-12.

Fenton MB, Jensen FH, Kalko EKV, Tyack PL. 2014.  Sonar signals of bats and toothed whales. Handbook of Auditory Research 51:11-59. http://dx.doi.org/10.1007/978-1-4614-9146-0_2 

Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. 2009. Electrifying love: electric fish use species-specific discharge for mate recognition. Biology Letters 5:225-228.  http://rsbl.royalsocietypublishing.org/cgi/doi/10.1098/rsbl.2008.0566

Gardiner JM, Atema J. 2010. The function of bilateral odor time differences in olfactory orientation of sharks. Current Biology 20:1187-1191.  https://doi.org/10.1016/j.cub.2010.04.053

Gebhardt K, Böhme M, von der Emde G. 2012. Electrocommunication behaviour during social interactions in two species of pulse-type weakly electric fishes (Mormyridae). Journal of Fish Biology 81:2235-2254. https://doi.org/10.1016/j.cub.2010.04.053

Gordon MS, Tucker VA. 1965. Osmotic regulation in the tadpoles of the crab-eating frog Rana cancrivora. Journal of Experimental Biology  42:437-445. http://jeb.biologists.org/content/42/3/437 

Gordon MS, Tucker VA. 1968. Further observations on the physiology of salinity adaptation in the crab-eating frog Rana cancrivora. Journal of Experimental Biology 49:185-193. http://jeb.biologists.org/content/49/1/185 

Hazon N and 5 others. 2003. Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity. Comparative Biochemistry and Physiology Part B      136:685-700. http://www.sciencedirect.com/science/article/pii/S109649590300280X

Hazon N, Eddy FB, Flik G. (eds.) 1997. Ionic Regulation in Animals: A Tribute to Professor W. T. W. Potts. Springer-Verlag, Berlin.

Helfman GS, Collette BB, Facey DE et al. 2009. The Diversity of Fishes. Wiley-Blackwell. Chichester, West Sussex, UK.

Hopkins GR, Brodie ED Jr. 2015. Occurrence of amphibians in saline habitats: a review and evolutionary perspective. Herpetological Monographs 29:1-27. https://doi.org/10.1655/HERPMONOGRAPHS-D-14-00006

Hsu W-T and 5 others. 2012. Salinity acclimation affects survival and metamorphosis of crab-eating frog tadpoles. Herpetologica 68:14-21. https://doi.org/10.1655/HERPETOLOGICA-D-11-00018.1

Kalmijn AJ. 1982. Electric and magnetic field detection in elasmobranch fishes. Science 218:916-918. http://science.sciencemag.org/content/218/4575/916

Katz PS. 2006. Comparative neurophysiology: an electric convergence in fish. Current Biology 16:R327-R330. http://linkinghub.elsevier.com/retrieve/pii/S0960982206014084 

Khan I and 9 others. 2015. Olfactory receptor subgenomes linked with broad ecological adaptations in Sauropsida. Molecular Biology and Evolution 32:2832-2843. https://doi.org/10.1093/molbev/msv155

Kimber JA, Sims DW, Bellamy PH et al. 2011. The ability of a benthic elasmobranch to discriminate between biological and artificial electric fields. Marine Biology 158:1-8.  https://doi.org/10.1007/s00227-010-1537-y

Kishida T, Kubota S, Shirayama Y, Fukami H. 2007. The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biology Letters 3:428-430. http://rsbl.royalsocietypublishing.org/cgi/doi/10.1098/rsbl.2007.0191

Kramer B. 2009.  Electric fish. In: Binder MD, Hirokawa N, Windhorst U. (eds.) pp. 1045-1050. Encyclopedia of Neuroscience. Springer, NY. 

Lange R, Fugelli K. 1965. The osmotic adjustment in the euryhaline teleosts, the flounder, Pleuronectes flesus L. and the three-spined stickleback, Gasterosteus aculeatus L. Comparative Biochemistry and Physiology 15:283-292. https://doi.org/10.1016/0010-406X(65)90132-5 

Langner G, Scheich H. 2009. Electric Senses in Monotremes: Electroreception and Electrolocation in the Platypus and the Echidna. In: Binder MD, Hirokawa N, Windhorst U.(eds.) pp. 1056-1060. Encyclopedia of Neuroscience. Springer, NY. 

Lewis JE, Gilmour KM, Moorhead MJ, Perry SF, Markham MR. 2014. Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. The Journal of Neuroscience 34:197-201. DOI: https://doi.org/10.1523/JNEUROSCI.3180-13.2014 

Lotan R. 1971. Osmotic adjustment in the euryhaline teleost Aphanius dispar (Cyprinodontidae). Zeitschrift fur Vergleichende Physiologie 75:383-387. https://doi.org/10.1007/BF00630558 

Lucifora LO, de Carvalho MR, Kyne PM, White WT. 2015. Freshwater sharks and rays. Current Biology 25:R971-973. http://www.sciencedirect.com/science/article/pii/S0960982215009525 

Markham MR. 2013. Electrocyte physiology: 50 years later. Journal of Experimental Biology 216:2451-2548. http://jeb.biologists.org/cgi/doi/10.1242/jeb.082628 

Moller P. 1995. Electric Fishes: History and Behavior. Chapman and Hall, London, UK.

Morais P, Dias E, Babaluk J, Antuies C. 2011. The migration patterns of the European flounder Platichthys flesus (Linnaeus, 1758) (Pleuronectidae, Pisces) at the southern limit of its distribution range: Ecological implications and fishery management. Journal of Sea Research 65:235-246. http://www.sciencedirect.com/science/article/pii/S1385110110001255

Nelson ME. 2011a. Electric fish. Current Biology 21:R528-R529. http://www.sciencedirect.com/science/article/pii/S0960982211003496

Nosal AP, Chao Y, Farrara JD, Chai F, Hastings PA. 2016. Olfaction contributes to pelagic navigation in a coastal shark. PLoS ONE 11(1):e0143758. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143758

Nummela S, Thewissen JGM. 2008. The physics of sound in air and water. In Thewissen JG,. M.; Nummela S. (eds.). pp. 175-82.  Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates. University of California Press, Berkeley, CA.

Öhlund G, Hedström P, Noran S, Hein CL, Englund G. 2014. Temperature dependence of predation depends on the relative performance of predators and prey. Proceedings of the Royal Society B 282: 20142254. DOI: 10.1098/rspb.2014.2254 

Pang PKT, Griffith RW, Atz JW. 1977. Osmoregulation in elasmobranchs. American Zoologist 17:365-377. https://academic.oup.com/icb/article/17/2/365/163559/Osmoregulation-in-Elasmobranchs

Payne NL and 9 others. 2016. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Functional Ecology 30:903-912. http://doi.wiley.com/10.1111/1365-2435.12618 

Pelster B, Scheid P. 1992. Countercurrent concentration and gas secretion in the fish swim bladder. Physiological Zoology 65:1-16. https://doi.org/10.1086/physzool.65.1.30158236

Piermarini PM, Evans DH. 1998. Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater Lake Jesup of the St. Johns River, Florida. Physiological Zoology 71:553-560. http://www.journals.uchicago.edu/doi/abs/10.1086/515973

Pillans RD, Franklin CE. 2004. Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient. Comparative Biochemistry and Physiology Part A 138:363-371. http://www.sciencedirect.com/science/article/pii/S1095643304001564

Pillans RD, Good JP, Anderson JP, Hazon N, Franklin CE. 2005. Freshwater to seawater acclimation on juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine. Journal of Comparative Physiology B 175:37-45. 10.1007/s00360-004-0460-2

Rakus K and 13 others. 2017. Conserved fever pathways across vertebrates: A herpesvirus expressed decoy TNF-a deceptor delays behavioral fever in fish. Cell Host & Microbe 21:244-253. http://www.sciencedirect.com/science/article/pii/S193131281730032X

Robertson JD. 1975. Osmotic constituents of the blood plasma and parietal muscle of Squalus acanthias L. Biological Bulletin 148:303-319. https://doi.org/10.2307/1540549

Rumer JL, Brauner CJ. 2015. Root Effect haemoglobins in fish may greatly enhance general oxygen delivery relative to other vertebrates. PLoS ONE 10(10): e0139477. https://doi.org/10.1371/journal.pone.0139477

Rumer JL, McKenzie DJ, Innocenti A, Supuran CT, Brauner CJ. 2013. Root Effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 340:1327-1329. DOI: 10.1126/science.1233692 

Salazar VL, Krahe R, Lewis JE. 2013. The energetics of electric organ discharge generation in gymnotiform weakly electric fish. Journal of Experimental Biology 216:2459-2468. http://jeb.biologists.org/cgi/doi/10.1242/jeb.082735 

Shichida Y, Yamashita, Imai H, Kishida T. 2013. Aquatic adaptation and the evolution of the loss of olfaction in amniotes. In ShichidaY. Yamashita T, Imai H, Kishida T. (eds.) Evolution and Senses: Opsins, Bitter Taste, and Olfaction. Pp 35-46. Springer Briefs in Biology, NY.

Smith HW. 1931. The absorption and excretion of water and salts by the elasmobranch fishes. I. Fresh water elasmobranchs. American Journal of Physiology 98:279-295. https://doi.org/10.1152/ajplegacy.1931.98.2.279 

Smith HW. 1931. The absorption and excretion of water and salts by the elasmobranch fishes. II. Marine elasmobranchs. American Journal of Physiology 98:296-310. https://doi.org/10.1152/ajplegacy.1931.98.2.279 

Speers-Roesch B, Norin T. 2016. Ecological significance of thermal tolerance and performance in fishes: new insights from integrating field and laboratory approaches. Functional Ecology 30:842-844. http://doi.wiley.com/10.1111/1365-2435.12652 

Steiger SS, Fidler AE, Valcu M, Kempenaers B. 2008. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proceedings of the Royal Society B 275:2309-2317. http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2008.0607 

Takei Y, Hiroi J, Takahashi H, Sakamoto T. 2014. Diverse mechanisms for body fluid regulation in teleost fishes. American Journal of Physiology: Regulatory, Integrative, and Comparative Physiology 307: R778–R792. https://doi.org/10.1152/ajpregu.00104.2014 

Takei Y. 2015. From aquatic to terrestrial life: evolution of the mechanisms for water acquisition, Zoological Science 32:1-7. https://doi.org/10.2108/zs140142 

Thorson TB, Cowan CM, Watson DE. 1973. Body fluid solutes of juveniles and adults of the euryhaline bull shark Carcharhinus leucas from freshwater and saline environments. Physiological Zoology 46:29-42. http://www.journals.uchicago.edu/doi/abs/10.1086/physzool.46.1.30152514 

Valentinčič T. 2005. Olfactory discrimination in fishes. In Reutter K, Kapoor BG (eds.) Fish Chemosenses. Science Publishers, Enfield, New Hampshire.

Van der Emde G. 1999. Active electrolocation of objects in weakly electric fish. Journal of Experimental Biology 202:1205-1215. http://jeb.biologists.org/content/202/10/1205 

Wang X, Kültz D. 2017. Osmolality/salinity-responsive enhancers (OSREs)  control induction of osmoprotective genes in euryhaline fish. Proceedings of the National Academy of Sciences, USA 114:E2729-E2738. http://www.pnas.org/content/early/2017/03/08/1614712114 

Withers PC, Morrison G, Guppy M. 1994. Buoyancy role of urea and TMAO in an elasmobranch fish, the Port Jackson shark, Heterodontus portusjacksoni. Physiological Zoology 67:693-705. https://www.journals.uchicago.edu/doi/abs/10.1086/physzool.67.3.30163765

Wood CM and 11 others. 2016. Mammalian metabolic rates in the hottest fish on earth. Scientific Reports 6:26990. doi:10.1038/srep26990 

Wu C-S, Kam Y-C. 2009. Effects of salinity on the survival, growth, development, and metamorphosis of Fejervarya limnocharis tadpoles living in brackish water. Zoological Science 26:476-482. https://doi.org/10.2108/zsj.26.476 

Yopak KE, Lisney TJ, Collin SP. 2015. Not all sharks are ‘‘swimming noses’’: variation in olfactory bulb size in cartilaginous fishes. Brain Structure and Function 220:1127-1143. http://link.springer.com/10.1007/s00429-014-0705-0 

Back to top